题目内容

7.如图,在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.
(1)证明:A1D⊥平面A1BC;
(2)求二面角A1-BD-B1的平面角的余弦值.

分析 (1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过$\overrightarrow{{A}_{1}D}$•$\overrightarrow{O{A}_{1}}$=$\overrightarrow{{A}_{1}D}$•$\overrightarrow{BC}$=0及线面垂直的判定定理即得结论;
(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.

解答 (1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.
则BC=$\sqrt{2}$AC=2$\sqrt{2}$,A1O=$\sqrt{A{{A}_{1}}^{2}-A{O}^{2}}$=$\sqrt{14}$,
易知A1(0,0,$\sqrt{14}$),B($\sqrt{2}$,0,0),C(-$\sqrt{2}$,0,0),
A(0,$\sqrt{2}$,0),D(0,-$\sqrt{2}$,$\sqrt{14}$),B1($\sqrt{2}$,-$\sqrt{2}$,$\sqrt{14}$),
$\overrightarrow{{A}_{1}D}$=(0,-$\sqrt{2}$,0),$\overrightarrow{BD}$=(-$\sqrt{2}$,-$\sqrt{2}$,$\sqrt{14}$),
$\overrightarrow{{B}_{1}D}$=(-$\sqrt{2}$,0,0),$\overrightarrow{BC}$=(-2$\sqrt{2}$,0,0),$\overrightarrow{O{A}_{1}}$=(0,0,$\sqrt{14}$),
∵$\overrightarrow{{A}_{1}D}$•$\overrightarrow{O{A}_{1}}$=0,∴A1D⊥OA1
又∵$\overrightarrow{{A}_{1}D}$•$\overrightarrow{BC}$=0,∴A1D⊥BC,
又∵OA1∩BC=O,∴A1D⊥平面A1BC;
(2)解:设平面A1BD的法向量为$\overrightarrow{m}$=(x,y,z),
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{{A}_{1}D}=0}\\{\overrightarrow{m}•\overrightarrow{BD}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{-\sqrt{2}y=0}\\{-\sqrt{2}x-\sqrt{2}y+\sqrt{14}z=0}\end{array}\right.$,
取z=1,得$\overrightarrow{m}$=($\sqrt{7}$,0,1),
设平面B1BD的法向量为$\overrightarrow{n}$=(x,y,z),
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{B}_{1}D}=0}\\{\overrightarrow{n}•\overrightarrow{BD}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{-\sqrt{2}x-\sqrt{2}y+\sqrt{14}z=0}\\{-\sqrt{2}x=0}\end{array}\right.$,
取z=1,得$\overrightarrow{n}$=(0,$\sqrt{7}$,1),
∴cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{1}{2\sqrt{2}×2\sqrt{2}}$=$\frac{1}{8}$,
又∵该二面角为钝角,
∴二面角A1-BD-B1的平面角的余弦值为-$\frac{1}{8}$.

点评 本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网