题目内容
(2008•黄冈模拟)已知数列{an}满足:an+1=an+(
)n+1(n∈N*),且a1=1;设bn=
an-
.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若cn=2n-1(n∈N*),求数列{bn•cn}的前n项和Sn.
1 |
2 |
1 |
2 |
3 |
4 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若cn=2n-1(n∈N*),求数列{bn•cn}的前n项和Sn.
分析:(I)利用已知和“累加求和”、等比数列的前n项和公式即可得出;
(II)利用“错位相减法”和等比数列的前n项和公式即可得出.
(II)利用“错位相减法”和等比数列的前n项和公式即可得出.
解答:解:(Ⅰ)∵an+1=an+(
)n+1(n∈N*),且a1=1,
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
=1+(
)2+(
)3+…+(
)n=1+
=
-(
)n.
又∵当n=1时,上式也成立,∴an=
-(
)n(n∈N*).
(Ⅱ)∵bn=
an-
=
[
-(
)n]-
=-
n+1(n∈N*),
又∵cn=2n-1(n∈N*),
∴Sn=b1•c1+b2•c2+…+bn•cn
∴Sn=-(
)2-3×(
)3-5×(
)4-…-(2n-1)×(
)n+1①
∴
Sn=-(
)3-3×(
)4-…-(2n-3)×(
)n+1-(2n-1)×(
)n+2②
①-②得:
Sn=-(
)2-2×(
)3-2×(
)4-…-2×(
)n+1+(2n-1)×(
)n+2
=-
-2[(
)3+(
)4+…+(
)n+1]+(2n-1)(
)n+2=-
+
∴Sn=-
+
.
1 |
2 |
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
=1+(
1 |
2 |
1 |
2 |
1 |
n |
| ||||
1-
|
3 |
2 |
1 |
2 |
又∵当n=1时,上式也成立,∴an=
3 |
2 |
1 |
2 |
(Ⅱ)∵bn=
1 |
2 |
3 |
4 |
1 |
2 |
3 |
2 |
1 |
2 |
3 |
4 |
1 |
2 |
又∵cn=2n-1(n∈N*),
∴Sn=b1•c1+b2•c2+…+bn•cn
∴Sn=-(
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∴
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
①-②得:
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
=-
1 |
4 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
3 |
4 |
2n+3 |
2n+2 |
∴Sn=-
3 |
2 |
2n+3 |
2n+1 |
点评:熟练掌握“累加求和”、“错位相减法”和等比数列的前n项和公式是解题的关键.
练习册系列答案
相关题目