题目内容
数列{an}满足:a1=1,an+1=
(I)求证:1<an<2(n∈N*,n≥2),
(Ⅱ)令bn=|an-
|
(1)求证:{bn}是递减数列;
(2)设{bn}的前n项和为Sn,求证:Sn<
.
an+2 |
an+1 |
(I)求证:1<an<2(n∈N*,n≥2),
(Ⅱ)令bn=|an-
2 |
(1)求证:{bn}是递减数列;
(2)设{bn}的前n项和为Sn,求证:Sn<
2(2
| ||
7 |
(Ⅰ)a1=1,a2=
=
,
(1)n=2时,1<a2=
<2,∴n=2时不等式成立;
(2)假设n=k(k∈N*,k≥2)时不等式成立,即1<ak<2,
ak+1=1+
,
∴
<ak+1<
,
∴n=k+1时不等式成立,
由(1)(2)可知对n∈N*,n≥2都有1<an<2;
(Ⅱ)(1)
=
=
=
•
=
•
=
,
又
<
<1,
∴{bn}是递减数列;
(2)由(1)知:
<
,∴bn+1<
bn,
则bn<
bn-1<(
)2bn-2<…<(
)n-1b1=(
-1)(
)n-1,
所以Sn=b1+b2+b3+…+bn<(
-1)[1+
+(
)2+…+(
)n-1]
=(
-1)
=
[1-(
)n]<
.
1+2 |
1+1 |
3 |
2 |
(1)n=2时,1<a2=
3 |
2 |
(2)假设n=k(k∈N*,k≥2)时不等式成立,即1<ak<2,
ak+1=1+
1 |
ak+1 |
∴
4 |
3 |
3 |
2 |
∴n=k+1时不等式成立,
由(1)(2)可知对n∈N*,n≥2都有1<an<2;
(Ⅱ)(1)
bn+1 |
bn |
|an+1-
| ||
|an-
|
|
| ||||
|an-
|
=
1 |
|an+1| |
|an+2-
| ||||
|an-
|
=
1 |
|an+1| |
|an(1-
| ||||||
|an-
|
|
| ||
|an+1| |
又
|
| ||
|an+1| |
| ||
2 |
∴{bn}是递减数列;
(2)由(1)知:
bn+1 |
bn |
| ||
2 |
| ||
2 |
则bn<
| ||
2 |
| ||
2 |
| ||
2 |
2 |
| ||
2 |
所以Sn=b1+b2+b3+…+bn<(
2 |
| ||
2 |
| ||
2 |
| ||
2 |
=(
2 |
1-(
| ||||
1-
|
=
2(
| ||||
7 |
| ||
2 |
2(2
| ||
7 |
练习册系列答案
相关题目