题目内容

已知抛物线的顶点为原点,其焦点到直线:的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.

(Ⅰ) 求抛物线的方程;

(Ⅱ) 当点为直线上的定点时,求直线的方程;

(Ⅲ) 当点在直线上移动时,求的最小值.

 

【答案】

(Ⅰ)  (Ⅱ)  (Ⅲ)

【解析】(Ⅰ) 依题意,设抛物线的方程为,由结合,

解得. 所以抛物线的方程为.

(Ⅱ) 抛物线的方程为,即,求导得

,(其中),则切线的斜率分别为,,

所以切线的方程为,即,即

同理可得切线的方程为

因为切线均过点,所以,

所以为方程的两组解.

所以直线的方程为.

(Ⅲ) 由抛物线定义可知,,

所以

联立方程,消去整理得

由一元二次方程根与系数的关系可得,

所以

又点在直线上,所以,

所以

所以当时, 取得最小值,且最小值为.

(1)利用点到直线的距离公式直接求解C的值,便可确定抛物线方程;(2)利用求导的思路确定抛物线的两条切线,借助均过点P,得到直线方程;(3)通过直线与抛物线联立,借助韦达定理和抛物线定义将进行转化处理,通过参数的消减得到函数关系式是解题的关键,然后利用二次函数求最值,需注意变量的范围.

【考点定位】本题考查抛物线的方程、定义、切线方程以及直线与抛物线的位置关系,考查学生的分析问题的能力和转化能力、计算能力.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网