题目内容
已知数列{an}的各项均为正数,其前n项和为Sn,点(an,Sn)在曲线(x+1)2=4y上,
(1)求{an}通项公式.
(2)设数列{bn}满足b1=3,bn+1=abn,求证:{bn-1}为等比数列,并求{bn}的通项.
(3)在(2)条件下,cn=
+
,求数列{cn}前n项和Tn.
(1)求{an}通项公式.
(2)设数列{bn}满足b1=3,bn+1=abn,求证:{bn-1}为等比数列,并求{bn}的通项.
(3)在(2)条件下,cn=
bn |
bn-1 |
bn+1-2 |
bn+1-1 |
分析:(1)由点(an,Sn)在曲线(x+1)2=4y上,得(an+1)2=Sn×4,n≥2时,(an-1+1)2=Sn-1,两式相减结合an>0可得an-an-1=2,由此能求出通项公式.
(2)由bn+1=abn=2bn-1可得bn+1-1=2(bn-1),b1=3,由此能够证明{bn-1}为等比数列,并能求出{bn}的通项公式.
(3)由bn=2n+1,知cn=
+
=2+
,由此利用分组求和法能求出数列{cn}前n项和.
(2)由bn+1=abn=2bn-1可得bn+1-1=2(bn-1),b1=3,由此能够证明{bn-1}为等比数列,并能求出{bn}的通项公式.
(3)由bn=2n+1,知cn=
bn |
bn-1 |
bn+1-2 |
bn+1-1 |
1 |
2n+1 |
解答:(1)解:∵点(an,Sn)在曲线(x+1)2=4y上.
∴(an+1)2=Sn×4.
当n≥2时,(an-1+1)2=Sn-1,
两式相减可得Sn-Sn-1=(an+1)2-(an-1+1)2=an×4,
即(an-1)2=(an-1+1)2,
∴(an-an-1-2)(an+an-1)=0.
∵an>0,∴an-an-1=2,∵(a1+1)2=4S1,∴a1=1.
∴数列{an}是以1为首项,以2为公差的等差数列
∴an=1+2(n-1)=2n-1.
(2)证明:∵bn+1=abn=2bn-1
∴bn+1-1=2(bn-1),即
=2,
∵b1=3,∴b1-1=2,
∴{bn-1}为首项是2,公比是2的等比数列,
∴∴bn-1=2•2n-1=2n,
∴bn=2n+1.
(3)解:∵bn=2n+1,
∴cn=
+
=
+
=2+
,
∴数列{cn}前n项和:
Tn=2n+(
+
+
+…+
)
=2n+
=2n+
-
.
∴(an+1)2=Sn×4.
当n≥2时,(an-1+1)2=Sn-1,
两式相减可得Sn-Sn-1=(an+1)2-(an-1+1)2=an×4,
即(an-1)2=(an-1+1)2,
∴(an-an-1-2)(an+an-1)=0.
∵an>0,∴an-an-1=2,∵(a1+1)2=4S1,∴a1=1.
∴数列{an}是以1为首项,以2为公差的等差数列
∴an=1+2(n-1)=2n-1.
(2)证明:∵bn+1=abn=2bn-1
∴bn+1-1=2(bn-1),即
bn+1-1 |
bn-1 |
∵b1=3,∴b1-1=2,
∴{bn-1}为首项是2,公比是2的等比数列,
∴∴bn-1=2•2n-1=2n,
∴bn=2n+1.
(3)解:∵bn=2n+1,
∴cn=
bn |
bn-1 |
bn+1-2 |
bn+1-1 |
=
2n+1 |
2n |
2n+1-1 |
2n+1 |
=2+
1 |
2n+1 |
∴数列{cn}前n项和:
Tn=2n+(
1 |
22 |
1 |
23 |
1 |
24 |
1 |
2n+1 |
=2n+
| ||||
1-
|
=2n+
1 |
2 |
1 |
2n+1 |
点评:本题考查由数列的和与项的递推公式求解数列的通项公式,等差数列通项公式的应用,考查数列的前n项和的求法,解题时要认真审题,注意迭代法、构造法、裂项法和分组求和法的合理运用.
练习册系列答案
相关题目