ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©=lnx£¬g£¨x£©=£¨m+1£©x2-x£¨m¡Ù-1£©£®£¨I£©Èôº¯Êýy=f£¨x£©Óëy=g£¨x£©µÄͼÏóÔÚ¹«¹²µãP´¦ÓÐÏàͬµÄÇÐÏߣ¬ÇóʵÊýmµÄÖµºÍPµÄ×ø±ê£»
£¨II£©Èôº¯Êýy=f£¨x£©Óëy=g£¨x£©µÄͼÏóÓÐÁ½¸ö²»Í¬µÄ½»µãM¡¢N£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨III£©ÔÚ£¨II£©µÄÌõ¼þÏ£¬¹ýÏ߶ÎMNµÄÖеã×÷xÖáµÄ´¹Ïß·Ö±ðÓëf£¨x£©µÄͼÏóºÍg£¨x£©µÄͼÏó½»ÓÚS¡¢Tµã£¬ÒÔSµãΪÇеã
×÷f£¨x£©µÄÇÐÏßl1£¬ÒÔTΪÇеã×÷g£¨x£©µÄÇÐÏßl2£¬ÊÇ·ñ´æÔÚʵÊým£¬Ê¹µÃl1¡Îl2£¿Èç¹û´æÔÚ£¬Çó³ömµÄÖµ£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨I£©ÉèÁ½º¯ÊýͼÏóµÄ¹«¹²µãµÄ×ø±êP£¨x0£¬y0£©£¬°ÑPµÄ×ø±ê´úÈëµ½f£¨x£©ºÍg£¨x£©ÖÐÀûÓõĺ¯ÊýÖµÏàµÈµÃµ½Ò»¸ö¹Øϵʽ¼Ç×÷¢Ù£¬ÓÖÒòΪÔÚP´¦Óй²Í¬µÄÇÐÏߣ¬ËùÒÔ·Ö±ðÇó³öf£¨x£©ºÍg£¨x£©µÄµ¼º¯Êý£¬°ÑPµÄºá×ø±ê·Ö±ð´úÈëµ½Á½µ¼º¯ÊýÖÐÀûÓõ¼º¯ÊýÖµÏàµÈµÃµ½ÓÖÒ»¸ö¹Øϵʽ£¬ÓɹØϵʽ½â³öm£¬¼Ç×÷¢Ú£¬½«¢Ú´úÈë¢Ù£¬°ÑÓұ߱äΪ0ºó£¬Éè×ó±ßµÄ¹ØϵʽΪh£¨x£©£¬Çó³öh£¨x£©µÄµ¼º¯Êý£¬ÀûÓÃx´óÓÚ0µÃµ½µ¼º¯Êý´óÓÚ0£¬ËùÒÔh£¨x£©×î¶àÖ»ÓÐ1¸öÁãµã£¬¹Û²ì¿ÉµÃºá×ø±êΪ1ΪÁãµã£¬¼´¿ÉÇó³ömµÄÖµ£¬½ø¶øÇó³ö´ËʱPµÄ×ø±ê£»
£¨II£©ÓɵÚÒ»ÎÊÇóµÃµÄmµÄÖµºÍPµÄ×ø±ê£¬Çó³öº¯Êýg£¨x£©µÄ¶Ô³ÆÖᣬf£¨x£©Êǹ̶¨²»±äµÄ£¬ËùÒÔ½«g£¨x£©µÄ¶Ô³ÆÖáÏòÓÒÒƶ¯£¬Á½ÌõÇúÏßÓв»Í¬µÄ½»µã£¬¼´µ±x=
´óÓÚ
Áгö¹ØÓÚmµÄ²»µÈʽ£¬Çó³ö²»µÈʽµÄ½â¼¯¼´¿ÉµÃµ½´ËʱmµÄ·¶Î§£¬¶øµ±mСÓÚ-1ʱ£¬Å×ÎïÏß¿ª¿ÚÏòÏ£¬Ö»ÓÐÒ»¸ö½»µã£¬²»ºÏÌâÒ⣻
£¨III£©²ÉÓ÷´Ö¤·¨Ö¤Ã÷£¬·½·¨ÊÇ£º¼ÙÉè´æÔÚÕâÑùµÄm£¬¿ÉÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÇÒx1£¾x2£¬ÀûÓÃÖеã×ø±ê¹«Ê½Çó³öMÓëNµÄÖеã×ø±ê£¬È»ºó°ÑÖеãµÄºá×ø±ê·Ö±ð´úÈëµ½f£¨x£©ºÍg£¨x£©µÄµ¼º¯ÊýÖм´¿ÉÇó³öÁ½ÇÐÏß·½³ÌµÄбÂÊ£¬ÒòΪÁ½ÇÐÏßƽÐУ¬ËùÒÔÀûÓÃбÂÊÏàµÈµÃµ½Ò»¸ö¹Øϵʽ¼Ç×÷¢Û£¬ÇÒ°ÑÁ½µãµÄºá×ø±ê·Ö±ð´úÈëµ½f£¨x£©ºÍg£¨x£©ÖУ¬²¢Èú¯ÊýÖµÏàµÈ£¬¸ø¢ÛµÄÁ½±ßͬ³ËÒÔx1-x2£¬µÃ¹Øϵʽ¢Ü£¬°Ñ¢Ü»¯¼òºó£¬Éè¦ÌµÈÓÚ
´óÓÚ1£¬µÃµ½¹ØÓڦ̵ĵÈʽ£¬ÒÆÏîºóÉèh£¨¦Ì£©µÈÓÚµÈʽµÄ×ó±ß£¬Çó³öh£¨¦Ì£©µÄµ¼º¯Êý£¬Åжϳöµ¼º¯Êý´óÓÚ0£¬µÃµ½h£¨¦Ì£©ÔÚ[1£¬+¡Þ]Éϵ¥µ÷µÝÔö£¬¹Êh£¨¦Ì£©£¾h£¨1£©=0£¬Óë¸Õ²Å»¯¼òµÄµÈʽ¢Üì¶Ü£¬ËùÒÔ¼ÙÉè´íÎó£¬ËùÒÔ²»´æÔÚÕâÑùµÄm£¬Ê¹l1¡Îl2£®
£¨II£©ÓɵÚÒ»ÎÊÇóµÃµÄmµÄÖµºÍPµÄ×ø±ê£¬Çó³öº¯Êýg£¨x£©µÄ¶Ô³ÆÖᣬf£¨x£©Êǹ̶¨²»±äµÄ£¬ËùÒÔ½«g£¨x£©µÄ¶Ô³ÆÖáÏòÓÒÒƶ¯£¬Á½ÌõÇúÏßÓв»Í¬µÄ½»µã£¬¼´µ±x=
1 |
2(m+1) |
1 |
2 |
£¨III£©²ÉÓ÷´Ö¤·¨Ö¤Ã÷£¬·½·¨ÊÇ£º¼ÙÉè´æÔÚÕâÑùµÄm£¬¿ÉÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÇÒx1£¾x2£¬ÀûÓÃÖеã×ø±ê¹«Ê½Çó³öMÓëNµÄÖеã×ø±ê£¬È»ºó°ÑÖеãµÄºá×ø±ê·Ö±ð´úÈëµ½f£¨x£©ºÍg£¨x£©µÄµ¼º¯ÊýÖм´¿ÉÇó³öÁ½ÇÐÏß·½³ÌµÄбÂÊ£¬ÒòΪÁ½ÇÐÏßƽÐУ¬ËùÒÔÀûÓÃбÂÊÏàµÈµÃµ½Ò»¸ö¹Øϵʽ¼Ç×÷¢Û£¬ÇÒ°ÑÁ½µãµÄºá×ø±ê·Ö±ð´úÈëµ½f£¨x£©ºÍg£¨x£©ÖУ¬²¢Èú¯ÊýÖµÏàµÈ£¬¸ø¢ÛµÄÁ½±ßͬ³ËÒÔx1-x2£¬µÃ¹Øϵʽ¢Ü£¬°Ñ¢Ü»¯¼òºó£¬Éè¦ÌµÈÓÚ
x1 |
x2 |
½â´ð£º½â£º£¨I£©É躯Êýy=f£¨x£©Óëy=g£¨x£©Í¼ÏóµÄ¹«¹²µãΪP£¨x0£¬y0£©£¬
ÔòÓÐlnx0=£¨m+1£©x02-x0¢Ù£¬
ÓÖÔÚµãP´¦Óй²Í¬µÄÇÐÏߣ¬
¡àf¡ä(x0)=g¡ä(x0)?
=2(m+1)x0-1?m=
-1£¬¢Ú
¢Ú´úÈë¢Ù£¬µÃlnx0=
-
x0£®
Éèh(x)=lnx-
+
x?h¡ä(x)=
+
£¾0(x£¾0)£®
ËùÒÔ£¬º¯Êýh£¨x£©×î¶àÖ»ÓÐ1¸öÁãµã£¬
¹Û²ìµÃx0=1ÊÇÁãµã£¬¹Êm=0£®
´Ëʱ£¬µãP£¨1£¬0£©£»
£¨II£©¸ù¾Ý£¨I£©Öª£¬µ±m=0ʱ£¬Á½ÌõÇúÏßÇÐÓÚµãP£¨1£¬0£©£¬
´Ëʱ£¬±ä»¯µÄy=g£¨x£©µÄͼÏóµÄ¶Ô³ÆÖáÊÇx=
£¬
¶øy=f£¨x£©Êǹ̶¨²»±äµÄ£¬Èç¹û¼ÌÐøÈöԳÆÖáÏòÓÒÒƶ¯£¬
¼´x=
£¾
£¬½âµÃ-1£¼m£¼0£®Á½ÌõÇúÏßÓÐÁ½¸ö²»Í¬µÄ½»µã£¬
µ±m£¼-1ʱ£¬¿ª¿ÚÏòÏ£¬Ö»ÓÐÒ»¸ö½»µã£¬ÏÔÈ»²»ºÏÌâÒ⣬
ËùÒÔ£¬ÓÐ-1£¼m£¼0£»
£¨III£©¼ÙÉè´æÔÚÕâÑùµÄm£¬²»·ÁÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÇÒx1£¾x2£¬
ÔòMNÖеãµÄ×ø±êΪ(
£¬
)£®
ÒÔSΪÇÐÏßµÄÇÐÏßl1µÄбÂÊks=f¡ä(
)=
£¬
ÒÔTΪÇеãµÄÇÐÏßl2µÄбÂÊkT=g¡ä(
)=(m+1)(x1+x2)-1£®
Èç¹û´æÔÚm£¬Ê¹µÃks=kT£¬
¼´
=(m+1)(x1+x2)-1£®¢Û
¶øÇÒÓÐlnx1=£¨m+1£©x12-x1ºÍlnx2=£¨m+1£©x22-x2£®
Èç¹û½«¢ÛµÄÁ½±ßͬ³ËÒÔx1-x2£¬µÃ
¢Ü
=(m+1)(
-
)-(x1-x2)£¬
¼´
=[(m+1)
-x1]-[(m+1)
-x2]=lnx1-lnx2=ln
£¬
Ò²¾ÍÊÇln
=
£®
Éè¦Ì=
£¾1£¬ÔòÓÐln¦Ì=
(¦Ì£¾1)£®
Áîh(¦Ì)=ln¦Ì-
£¨¦Ì£¾1£©£¬Ôòh¡ä(¦Ì)=
-
=
£®
¡ß¦Ì£¾1£¬¡àh'£¨¦Ì£©£¾0£®
Òò´Ë£¬h£¨¦Ì£©ÔÚ[1£¬+¡Þ]Éϵ¥µ÷µÝÔö£¬¹Êh£¨¦Ì£©£¾h£¨1£©=0£®
¡àln¦Ì£¾
(¦Ì£¾1)¢Ý
¡à¢ÜÓë¢Ýì¶Ü£®
ËùÒÔ£¬²»´æÔÚʵÊýmʹµÃl1¡Îl2£®
ÔòÓÐlnx0=£¨m+1£©x02-x0¢Ù£¬
ÓÖÔÚµãP´¦Óй²Í¬µÄÇÐÏߣ¬
¡àf¡ä(x0)=g¡ä(x0)?
1 |
x0 |
1+x0 | ||
2
|
¢Ú´úÈë¢Ù£¬µÃlnx0=
1 |
2 |
1 |
2 |
Éèh(x)=lnx-
1 |
2 |
1 |
2 |
1 |
x |
1 |
2 |
ËùÒÔ£¬º¯Êýh£¨x£©×î¶àÖ»ÓÐ1¸öÁãµã£¬
¹Û²ìµÃx0=1ÊÇÁãµã£¬¹Êm=0£®
´Ëʱ£¬µãP£¨1£¬0£©£»
£¨II£©¸ù¾Ý£¨I£©Öª£¬µ±m=0ʱ£¬Á½ÌõÇúÏßÇÐÓÚµãP£¨1£¬0£©£¬
´Ëʱ£¬±ä»¯µÄy=g£¨x£©µÄͼÏóµÄ¶Ô³ÆÖáÊÇx=
1 |
2 |
¶øy=f£¨x£©Êǹ̶¨²»±äµÄ£¬Èç¹û¼ÌÐøÈöԳÆÖáÏòÓÒÒƶ¯£¬
¼´x=
1 |
2(m+1) |
1 |
2 |
µ±m£¼-1ʱ£¬¿ª¿ÚÏòÏ£¬Ö»ÓÐÒ»¸ö½»µã£¬ÏÔÈ»²»ºÏÌâÒ⣬
ËùÒÔ£¬ÓÐ-1£¼m£¼0£»
£¨III£©¼ÙÉè´æÔÚÕâÑùµÄm£¬²»·ÁÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÇÒx1£¾x2£¬
ÔòMNÖеãµÄ×ø±êΪ(
x1+x2 |
2 |
y1+y2 |
2 |
ÒÔSΪÇÐÏßµÄÇÐÏßl1µÄбÂÊks=f¡ä(
x1+x2 |
2 |
2 |
x1+x2 |
ÒÔTΪÇеãµÄÇÐÏßl2µÄбÂÊkT=g¡ä(
x1+x2 |
2 |
Èç¹û´æÔÚm£¬Ê¹µÃks=kT£¬
¼´
2 |
x1+x2 |
¶øÇÒÓÐlnx1=£¨m+1£©x12-x1ºÍlnx2=£¨m+1£©x22-x2£®
Èç¹û½«¢ÛµÄÁ½±ßͬ³ËÒÔx1-x2£¬µÃ
¢Ü
2(x1-x2) |
x1+x2 |
x | 2 1 |
x | 2 2 |
¼´
2(x1-x2) |
x1+x2 |
x | 2 1 |
x | 2 2 |
x1 |
x2 |
Ò²¾ÍÊÇln
x1 |
x2 |
2(
| ||
|
Éè¦Ì=
x1 |
x2 |
2(¦Ì-1) |
1+¦Ì |
Áîh(¦Ì)=ln¦Ì-
2(¦Ì-1) |
1+¦Ì |
1 |
¦Ì |
4 |
(1+¦Ì)2 |
(¦Ì-1)2 |
¦Ì(1+¦Ì)2 |
¡ß¦Ì£¾1£¬¡àh'£¨¦Ì£©£¾0£®
Òò´Ë£¬h£¨¦Ì£©ÔÚ[1£¬+¡Þ]Éϵ¥µ÷µÝÔö£¬¹Êh£¨¦Ì£©£¾h£¨1£©=0£®
¡àln¦Ì£¾
2(¦Ì-1) |
1+¦Ì |
¡à¢ÜÓë¢Ýì¶Ü£®
ËùÒÔ£¬²»´æÔÚʵÊýmʹµÃl1¡Îl2£®
µãÆÀ£º´ËÌâÒªÇóѧÉú»áÀûÓõ¼ÊýÇóÇúÏßÉϹýijµãÇÐÏß·½³ÌµÄбÂÊ£¬»áÌÖÂÛ¸ùµÄ´æÔÚÐÔ²¢»áÅжϸùµÄ¸öÊý£¬ÕÆÎÕ·´Ö¤·¨µÄÖ¤Ã÷·½·¨£¬ÊÇÒ»µÀ±È½ÏÄѵÄÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿