题目内容
在f(m,n)中,m,n,f(m,n)∈N*,且对任何m,n都有:(1)f(1,1)=1;(2)f(m,n+1)=f(m,n)+2;(3)f(m+1,1)=2f(m,1),给出以下三个结论:①f(1,5)=9;②f(5,1)=16;③f(5,6)=26其中正确的个数为
3
3
个.分析:由已知中对任意m、n∈N*都有:①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1).我们易推断出,f(n,1)=2n-1,f(n,1)=2n-1,f(m,n+1)=2m-1+2n,进而判断已知中三个结论,即可得到答案.
解答:解:∵f(m,n+1)=f(m,n)+2
∴f(1,n)=2n-1
故(1)f(1,5)=9正确;
又∵f(m+1,1)=2f(m,1)
∴f(n,1)=2n-1
∴(2)f(5,1)=16也正确;
则f(m,n+1)=2m-1+2n
∴(3)f(5,6)=26也正确
故答案为:3.
∴f(1,n)=2n-1
故(1)f(1,5)=9正确;
又∵f(m+1,1)=2f(m,1)
∴f(n,1)=2n-1
∴(2)f(5,1)=16也正确;
则f(m,n+1)=2m-1+2n
∴(3)f(5,6)=26也正确
故答案为:3.
点评:本题考查的知识点是抽象函数及其应用,其中根据已知条件推断出:f(n,1)=2n-1,f(n,1)=2n-1,f(m,n+1)=2m-1+2n,是解答本题的关键.
练习册系列答案
相关题目