题目内容

设等差数列{an}的前n项和为Sn,公差d>0,若a2=2,a5=11.
(1)求数列{an}的通项公式;
(2)设bn=
Sn
n+a
(a≠0)
,若{bn}是等差数列且cn=2b2n,求实数a与
lim
n→+∞
c1+c2+…+cn
bn+1
(b∈R)
的值.
(1)设等差数列{an}的通项为an=a1+(n-1)d,
由题得:a1+d=2,a1+4d=11,(2分)
解得:a1=-1,d=3,an=3n-4(4分)
(2)由(1)得:Sn=
n(3n-5)
2
(6分)
bn=
n(3n-5)
2(n+a)

b1=
-1
1+a
b2=
1
2+a
b3=
6
3+a

∵{bn}是等差数列,
2
2+a
=
-1
1+a
+
6
3+a

a=-
5
3
bn=
3n
2
(8分)
又∵cn=2b2n=23n
c1+c2+…+cn=
8
7
(8n-1)
(10分)
lim
n→+∞
c1+c2+…+cn
bn+1
=
8
7
(8n-1)
bn+1
=
0(|b<8)
8
7
(b=8)
不存在(|b<8或b=-8)
(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网