ÌâÄ¿ÄÚÈÝ
ÒÑÖªf1£¨x£©=|3x-1|£¬f2£¨x£©=|a•3x-9|£¨a£¾0£©£¬x¡ÊR£¬ÇÒf(x)=
|
£¨¢ñ£©µ±a=1ʱ£¬Çóf£¨x£©ÔÚx=1´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©µ±2¡Üa£¼9ʱ£¬Éèf£¨x£©=f2£¨x£©Ëù¶ÔÓ¦µÄ×Ô±äÁ¿È¡ÖµÇø¼äµÄ³¤¶ÈΪl£¨±ÕÇø¼ä[m£¬n]µÄ³¤¶È¶¨ÒåΪn-m£©£¬ÊÔÇólµÄ×î´óÖµ£»
£¨¢ó£©ÊÇ·ñ´æÔÚÕâÑùµÄa£¬Ê¹µÃµ±x¡Ê[2£¬+¡Þ£©Ê±£¬f£¨x£©=f2£¨x£©£¿Èô´æÔÚ£¬Çó³öaµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨¢ñ£©±¾ÎÊÖÐÒª´úÈëa=1ºó£¬×¢Òâf1£¨x£©Óëf2£¨x£©µÄ´óС±È½Ï£¬ÒÔ±ãÓÚÇó³öf£¨x£©µÄ½âÎöʽ£¬½ø¶øÀûÓú¯ÊýµÄµ¼Êý¸ÅÄî½â¾öÎÊÌ⣮
£¨¢ò£©±¾ÎÊÖнè¼øÉÏÎÊ£¨1£©µÄ½âÌâ˼Ï룬ÓɾßÌåµ½Ò»°ã£¬·½·¨ÒÀÈ»ÊÇÕë¶ÔaµÄ·¶Î§Ìõ¼þ£¬×÷²î±È½Ï³öf1£¨x£©Óëf2£¨x£©µÄ´óС£¬
ÔÚ2¡Üa£¼9ʱ£¬×Ô±äÁ¿xÈ¡ÄÄЩֵʱf£¨x£©=f2£¨x£©£¬½ø¶øÈ·¶¨Çó³öf£¨x£©µÄ½âÎöʽ£¬¶Ô²ÎÊýµÄÌÖÂÛÒª½áºÏ¾ßÌåµÄÊýÖµ£¬´ÓÖ±¹Ûµ½³éÏó²ÉÈ¡·ÖÀà²ßÂÔ£®
£¨¢ó£©±¾ÎÊÀûÓã¨2£©µÄ½áÂÛÈÝÒ×Çó½â£¬ÐèҪעÒâµÄÊǵȼÛת»¯Ë¼ÏëµÄÓ¦Ó㬷ÖÀàÌÖÂÛ˼ÏëÖØÐÂÔÚ±¾ÎÊÖеÄÌåÏÖ£®
£¨¢ò£©±¾ÎÊÖнè¼øÉÏÎÊ£¨1£©µÄ½âÌâ˼Ï룬ÓɾßÌåµ½Ò»°ã£¬·½·¨ÒÀÈ»ÊÇÕë¶ÔaµÄ·¶Î§Ìõ¼þ£¬×÷²î±È½Ï³öf1£¨x£©Óëf2£¨x£©µÄ´óС£¬
ÔÚ2¡Üa£¼9ʱ£¬×Ô±äÁ¿xÈ¡ÄÄЩֵʱf£¨x£©=f2£¨x£©£¬½ø¶øÈ·¶¨Çó³öf£¨x£©µÄ½âÎöʽ£¬¶Ô²ÎÊýµÄÌÖÂÛÒª½áºÏ¾ßÌåµÄÊýÖµ£¬´ÓÖ±¹Ûµ½³éÏó²ÉÈ¡·ÖÀà²ßÂÔ£®
£¨¢ó£©±¾ÎÊÀûÓã¨2£©µÄ½áÂÛÈÝÒ×Çó½â£¬ÐèҪעÒâµÄÊǵȼÛת»¯Ë¼ÏëµÄÓ¦Ó㬷ÖÀàÌÖÂÛ˼ÏëÖØÐÂÔÚ±¾ÎÊÖеÄÌåÏÖ£®
½â´ð£º½â£º£¨¢ñ£©µ±a=1ʱ£¬f2£¨x£©=|3x-9|£®
ÒòΪµ±x¡Ê£¨0£¬log35£©Ê±£¬f1£¨x£©=3x-1£¬f2£¨x£©=9-3x£¬
ÇÒf1£¨x£©-f2£¨x£©=2•3x-10£¼2•3log35-10=2•5-10=0£¬
ËùÒÔµ±x¡Ê£¨0£¬log35£©Ê±£¬f£¨x£©=3x-1£¬ÇÒ1¡Ê£¨0£¬log35£©£¨3·Ö£©
ÓÉÓÚf'£¨x£©=3xln3£¬ËùÒÔk=f'£¨1£©=3ln3£¬ÓÖf£¨1£©=2£¬
¹ÊËùÇóÇÐÏß·½³ÌΪy-2=£¨3ln3£©£¨x-1£©£¬
¼´£¨3ln3£©x-y+2-3ln3=0£¨5·Ö£©
£¨¢ò£©ÒòΪ2¡Üa£¼9£¬ËùÒÔ0£¼log3
¡Ülog3
£¬Ôò
¢Ùµ±x¡Ýlog3
ʱ£¬ÒòΪa•3x-9¡Ý0£¬3x-1£¾0£¬
ËùÒÔÓÉf2£¨x£©-f1£¨x£©=£¨a•3x-9£©-£¨3x-1£©=£¨a-1£©3x-8¡Ü0£¬½âµÃx¡Ülog3
£¬
´Ó¶øµ±log3
¡Üx¡Ülog3
ʱ£¬f£¨x£©=f2£¨x£©£¨6·Ö£©
¢Úµ±0¡Üx£¼log3
ʱ£¬ÒòΪa•3x-9£¼0£¬3x-1¡Ý0£¬
ËùÒÔÓÉf2£¨x£©-f1£¨x£©=£¨9-a•3x£©-£¨3x-1£©=10-£¨a+1£©3x¡Ü0£¬½âµÃx¡Ýlog3
£¬
´Ó¶øµ±log3
¡Üx£¼log3
ʱ£¬f£¨x£©=f2£¨x£©£¨7·Ö£©
¢Ûµ±x£¼0ʱ£¬ÒòΪf2£¨x£©-f1£¨x£©=£¨9-a•3x£©-£¨1-3x£©=8-£¨a-1£©3x£¾0£¬
´Ó¶øf£¨x£©=f2£¨x£©Ò»¶¨²»³ÉÁ¢£¨8·Ö£©
×ÛÉϵ㬵±ÇÒ½öµ±x¡Ê[log3
£¬log3
]ʱ£¬f£¨x£©=f2£¨x£©£¬
¹Êl=log3
-log3
=log3[
(1+
)]£¨9·Ö£©
´Ó¶øµ±a=2ʱ£¬lÈ¡µÃ×î´óֵΪlog3
£¨10·Ö£©
£¨¢ó£©¡°µ±x¡Ê[2£¬+¡Þ£©Ê±£¬f£¨x£©=f2£¨x£©¡±
µÈ¼ÛÓÚ¡°f2£¨x£©¡Üf1£¨x£©¶Ôx¡Ê[2£¬+¡Þ£©ºã³ÉÁ¢¡±£¬
¼´¡°|a•3x-9|¡Ü|3x-1|=3x-1£¨*£©¶Ôx¡Ê[2£¬+¡Þ£©ºã³ÉÁ¢¡±£¨11·Ö£©
¢Ùµ±a¡Ý1ʱ£¬log3
¡Ü2£¬Ôòµ±x¡Ý2ʱ£¬a•3x-9¡Ýa•3log3
-9=0£¬
Ôò£¨*£©¿É»¯Îªa•3x-9¡Ü3x-1£¬¼´a¡Ü1+
£¬¶øµ±x¡Ý2ʱ£¬1+
£¾1£¬
ËùÒÔa¡Ü1£¬´Ó¶øa=1ÊʺÏÌâÒ⣨12·Ö£©
¢Úµ±0£¼a£¼1ʱ£¬log3
£¾2£®
£¨1£©µ±x£¾log3
ʱ£¬£¨*£©¿É»¯Îªa•3x-9¡Ü3x-1£¬¼´a¡Ü1+
£¬¶ø1+
£¾1£¬
ËùÒÔa¡Ü1£¬´ËʱҪÇó0£¼a£¼1£¨£¨13·Ö£©
£¨2£©µ±x=log3
ʱ£¬£¨*£©¿É»¯Îª0¡Ü3x-1=
-1£¬
´ËʱֻҪÇó0£¼a£¼9£¨14·Ö£©
£¨3£©µ±2¡Üx£¼log3
ʱ£¬£¨*£©¿É»¯Îª9-a•3x¡Ü3x-1£¬¼´a¡Ý
-1£¬¶ø
-1¡Ü
£¬
ËùÒÔa¡Ý
£¬´ËʱҪÇó
¡Üa£¼1£¨15·Ö£©
ÓÉ£¨1£©£¨2£©£¨3£©£¬µÃ
¡Üa£¼1·ûºÏÌâÒâÒªÇó£®
×ۺϢ٢ÚÖª£¬Âú×ãÌâÒâµÄa´æÔÚ£¬ÇÒaµÄÈ¡Öµ·¶Î§ÊÇ
¡Üa¡Ü1£¨16·Ö£©
ÒòΪµ±x¡Ê£¨0£¬log35£©Ê±£¬f1£¨x£©=3x-1£¬f2£¨x£©=9-3x£¬
ÇÒf1£¨x£©-f2£¨x£©=2•3x-10£¼2•3log35-10=2•5-10=0£¬
ËùÒÔµ±x¡Ê£¨0£¬log35£©Ê±£¬f£¨x£©=3x-1£¬ÇÒ1¡Ê£¨0£¬log35£©£¨3·Ö£©
ÓÉÓÚf'£¨x£©=3xln3£¬ËùÒÔk=f'£¨1£©=3ln3£¬ÓÖf£¨1£©=2£¬
¹ÊËùÇóÇÐÏß·½³ÌΪy-2=£¨3ln3£©£¨x-1£©£¬
¼´£¨3ln3£©x-y+2-3ln3=0£¨5·Ö£©
£¨¢ò£©ÒòΪ2¡Üa£¼9£¬ËùÒÔ0£¼log3
9 |
a |
9 |
2 |
¢Ùµ±x¡Ýlog3
9 |
a |
ËùÒÔÓÉf2£¨x£©-f1£¨x£©=£¨a•3x-9£©-£¨3x-1£©=£¨a-1£©3x-8¡Ü0£¬½âµÃx¡Ülog3
8 |
a-1 |
´Ó¶øµ±log3
9 |
a |
8 |
a-1 |
¢Úµ±0¡Üx£¼log3
9 |
a |
ËùÒÔÓÉf2£¨x£©-f1£¨x£©=£¨9-a•3x£©-£¨3x-1£©=10-£¨a+1£©3x¡Ü0£¬½âµÃx¡Ýlog3
10 |
a+1 |
´Ó¶øµ±log3
10 |
a+1 |
9 |
a |
¢Ûµ±x£¼0ʱ£¬ÒòΪf2£¨x£©-f1£¨x£©=£¨9-a•3x£©-£¨1-3x£©=8-£¨a-1£©3x£¾0£¬
´Ó¶øf£¨x£©=f2£¨x£©Ò»¶¨²»³ÉÁ¢£¨8·Ö£©
×ÛÉϵ㬵±ÇÒ½öµ±x¡Ê[log3
10 |
a+1 |
8 |
a-1 |
¹Êl=log3
8 |
a-1 |
10 |
a+1 |
4 |
5 |
2 |
a-1 |
´Ó¶øµ±a=2ʱ£¬lÈ¡µÃ×î´óֵΪlog3
12 |
5 |
£¨¢ó£©¡°µ±x¡Ê[2£¬+¡Þ£©Ê±£¬f£¨x£©=f2£¨x£©¡±
µÈ¼ÛÓÚ¡°f2£¨x£©¡Üf1£¨x£©¶Ôx¡Ê[2£¬+¡Þ£©ºã³ÉÁ¢¡±£¬
¼´¡°|a•3x-9|¡Ü|3x-1|=3x-1£¨*£©¶Ôx¡Ê[2£¬+¡Þ£©ºã³ÉÁ¢¡±£¨11·Ö£©
¢Ùµ±a¡Ý1ʱ£¬log3
9 |
a |
9 |
a |
Ôò£¨*£©¿É»¯Îªa•3x-9¡Ü3x-1£¬¼´a¡Ü1+
8 |
3x |
8 |
3x |
ËùÒÔa¡Ü1£¬´Ó¶øa=1ÊʺÏÌâÒ⣨12·Ö£©
¢Úµ±0£¼a£¼1ʱ£¬log3
9 |
a |
£¨1£©µ±x£¾log3
9 |
a |
8 |
3x |
8 |
3x |
ËùÒÔa¡Ü1£¬´ËʱҪÇó0£¼a£¼1£¨£¨13·Ö£©
£¨2£©µ±x=log3
9 |
a |
9 |
a |
´ËʱֻҪÇó0£¼a£¼9£¨14·Ö£©
£¨3£©µ±2¡Üx£¼log3
9 |
a |
10 |
3x |
10 |
3x |
1 |
9 |
ËùÒÔa¡Ý
1 |
9 |
1 |
9 |
ÓÉ£¨1£©£¨2£©£¨3£©£¬µÃ
1 |
9 |
×ۺϢ٢ÚÖª£¬Âú×ãÌâÒâµÄa´æÔÚ£¬ÇÒaµÄÈ¡Öµ·¶Î§ÊÇ
1 |
9 |
µãÆÀ£º±¾Ì⿼²é·Ö¶Îº¯ÊýµÄÓйظÅÄº¯ÊýÇóÖµµÄÎÊÌ⣻¶Ôº¯ÊýµÄµ¼ÊýµÄ¸ÅÄîÒàÓÐËù¿¼²é£¬º¬²ÎÊýµÄÊýѧÎÊÌâµÄÌÖÂÛ£¬×¢ÖضԷÖÀàÌÖÂÛ˼Ï룬ÊýÐνáºÏ˼ÏëµÄ¿¼²é£¬¿¼²éÁ˶ԽüÄêÀ´¸ß¿¼ÕæÌâÖгöÏÖµÄÓйغã³ÉÁ¢ÎÊÌ⣬´æÔÚÐÔÎÊÌâµÄÇó½â²ßÂÔ£¬¶Ôº¯Êý֪ʶµÄ×ÛºÏÐÔ½âÌâÄÜÁ¦ÓкܸߵÄÒªÇó£¬ÊôÓÚѹÖáÌâµÄÌâÄ¿ÄѶȣ®±¾ÌâµÄÇó½â²ßÂÔÊÇϸ¶ÁÌâÒ⣬¾«È··ÖÎö²ÉÈ¡ÓÐÄѵ½Ò×£¬¸÷µã»÷ÆƵÄ˼Ï룬ͬʱעÒâ½âÌâ˼ÏëµÄÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿