题目内容

等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn
(3)设bn=log3a1+log3a2+…+log3an,记数列{
1
bn
}
的前n项和为Tn.若对于?n∈N*,恒有Tn
1-m
1005
成立,其中m∈N*,求m的最小值.
(1)设等比数列{an}的公比为q,则
2a1+3a1q=1
a12q4=9a12q6
,解得a1=
1
3
,q=
1
3

∴an=
1
3n

(2)∴数列{an}的前n项和Sn=
1
3
[1-(
1
3
)
n
]
1-
1
3
=
1
2
(1-
1
3n
);
(3)∵bn=log3a1+log3a2+…+log3an=-1-2-…-n=-
n(n+1)
2

1
bn
=-
2
n(n+1)
=-2(
1
n
-
1
n+1
),
∴Tn=-2[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]
=-2(1-
1
n+1
)=-
2n
n+1

∵Tn
1-m
1005
恒成立,
即-
2n
n+1
1-m
1005
恒成立,又m∈N*
∴m>2011-
2
n+1
恒成立,
∴mmin=2011.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网