题目内容
如图,长方体中,,,,设E为的中点,F为的中点,在给定的空间直角坐标系D-xyz下,试写出A,B,C,D,,,,,E,F各点的坐标.
A(3,0,0),B(3,5,0),C(0,5,0),D(0,0,0);(3,0,3),(3,5,3),(0,5,3),(0,0,3);E(),F(,5,)
解析:
设原点为O,因为A,B,C,D这4个点都在坐标平面 xOy内,
它们的竖坐标都是0,而它们的横坐标和纵坐标可利用,写出,
所以 A(3,0,0),B(3,5,0),C(0,5,0),D(0,0,0);
因为平面与坐标平面xOy平行,且,所以A',B',,D'的竖坐标
都是3,而它们的横坐标和纵坐标分别与A,B,C,D的相同,所以(3,0,3),(3,5,3),(0,5,3),(0,0,3);
由于E分别是中点,所以它在坐标平面xOy上的射影为DB的中点,从而E的横坐标和纵坐标分别是的,同理E的竖坐标也是的竖坐标的,所以E();
由F为中点可知,F在坐标平面xOy的射影为BC中点,横坐标和纵坐标分别为和5,同理点F在z轴上的投影是AA'中点,故其竖坐标为,所以F(,5,).
练习册系列答案
相关题目