题目内容

已知数列{an}的首项为2,点(an,an+1)在函数y=x+2的图象上
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项之和为Sn,求证
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
<1
分析:(1)点(an,an+1)代入直线方程可得an+1=an+2,则数列为等差数列,根据首项为2,公比为2写出通项公式即可;
(2)根据首项和公比写出等差数列的前n项和的公式sn,并表示出
1
sn
=
1
n(n+1)
=
1
n
-
1
n+1
,,利用拆项法把
1
n(n+1)
变为
1
n
-
1
n+1
,然后列举出各项,抵消可得证.
解答:解:(1)点(an,an+1)在函数y=x+2的图象上,∴an+1=an+2,
∴数列{an}是以首项为2公差为2的等差数列,
∴an=2+2(n-1)=2n;
(2)sn=
(2n+2)n
2
=n(n+1),
1
sn
=
1
n(n+1)
=
1
n
-
1
n+1

1
S1
+
1
S2
+
1
S3
+…+
1
Sn
=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)=1-
1
n+1
<1
点评:此题以一次函数为平台,考查等差数列的通项公式及前n项的和,是一道中档题.学生证明时应注意运用拆项法进行化简.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网