题目内容

下列命题中不正确的命题个数是
①若A、B、C、D是空间任意四点,则有数学公式+数学公式+数学公式+数学公式=0;
②|a|-|b|=|a+b|是a、b共线的充要条件;
③若a、b共线,则a与b所在直线平行;
④对空间任意点O与不共线的三点A、B、C,若数学公式=x数学公式+y数学公式+z数学公式(其中x、y、z∈R),则P、A、B、C四点共面.


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
C
分析:①由向量的运算法则知正确
②两边平方,利用向量的平方等于向量模的平方,得出两向量反向.
③向量共线的几何意义知所在的线平行或重合.
④利用空间向量的基本定理知错.
解答:易知只有①是正确的,
对于②,|a|-|b|=|a+b|?=??反向,故②错.
对于③共线,则它们所在直线平行或重合
对于④,若O∉平面ABC,则不共面,由空间向量基本定理知,P可为空间任一点,所以P、A、B、C四点不一定共面.
故选C.
点评:本题考查向量的运算法则、向量模的平方等于向量的平方、向量的几何意义、空间向量基本定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网