题目内容
【题目】设函数.
()若,求函数的单调区间.
()若函数在区间上是减函数,求实数的取值范围.
()过坐标原点作曲线的切线,证明:切点的横坐标为.
【答案】()单调减区间为,单调增区间为.()()见解析
【解析】试题分析:(1)当时,求出函数的导函数,分别令和,解出不等式得单调区间;(2)函数在区间上是减函数,即对任意恒成立,利用分离参数法可得最后结果;(3)设切点为,对函数进行求导,根据导数的几何意义得,根据切线过原点,可得斜率为,两者相等化简可得,先证存在性,再通过单调性证明唯一性.
试题解析:()当时, , ,令,则,令,则,∴函数的单调减区间为,单调增区间为.
(),∵在区间上是减函数,∴对任意恒成立,即对任意恒成立,
令,则,易知在上单调递减,∴,∴.
()设切点为, ,∴切线的斜率,
又切线过原点, ,∴,即,
∴,存在性, 满足方程,
所以是方程的根唯一性,
设,则,∴在上单调递增,且,∴方程有唯一解,综上,过坐标原点作曲线的切线,则切点的横坐标为.
【题目】某大型娱乐场有两种型号的水上摩托,管理人员为了了解水上摩托的使用及给娱乐城带来的经济收入情况,对该场所最近6年水上摩托的使用情况进行了统计,得到相关数据如表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代码 | 1 | 2 | 3 | 4 | 5 | 6 |
使用率() | 11 | 13 | 16 | 15 | 20 | 21 |
(1)请根据以上数据,用最小二乘法求水上摩托使用率关于年份代码的线性回归方程,并预测该娱乐场2018年水上摩托的使用率;
(2)随着生活水平的提高,外出旅游的老百姓越来越多,该娱乐场根据自身的发展需要,准备重新购进一批水上摩托,其型号主要是目前使用的Ⅰ型、Ⅱ型两种,每辆价格分别为1万元、1.2万元.根据以往经验,每辆水上摩托的使用年限不超过四年.娱乐场管理部对已经淘汰的两款水上摩托的使用情况分别抽取了50辆进行统计,使用年限如条形图所示:
已知每辆水上摩托从购入到淘汰平均年收益是0.8万元,若用频率作为概率,以每辆水上摩托纯利润(纯利润收益购车成本)的期望值为参考值,则该娱乐场的负责人应该选购Ⅰ型水上摩托还是Ⅱ型水上摩托?
附:回归直线方程为,其中, .