题目内容
数列{bn}中,b1=a,b2=a2,其中a>0,对于函数f(x)=
(bn+1-bn)x3-(bn-bn-1)x(n≥2)有f′(
)=0.
(1)求数列{bn}的通项公式;
(2)若
<a<2,cn=
(bn+
),sn=c1+c2+…+cn,求证:sn<2n-(
)n.
1 |
3 |
1 | ||
|
(1)求数列{bn}的通项公式;
(2)若
1 |
2 |
1 |
2 |
1 |
bn |
| ||
2 |
分析:(1)通过求导数结合已知可得(bn+1-bn)
-(bn-bn-1)=0,可得数列为b2-b1=a2-a为首项,a为公比的等比数列,再由迭代法易得通项;
(2)由(1)可知,cn=
(bn+
)=
(an+a-n),由
<a<2,可得(2a)n>1且an<2n,又(2n+2-n)-(an+a-n)=
[(2a)n-1](2n-an)>0,即(2n+2-n)>(an+a-n),故可得sn<
[(2+
)+(22+
)+…+(2n+
)],对式子的右边求和可得答案.
1 |
a |
(2)由(1)可知,cn=
1 |
2 |
1 |
bn |
1 |
2 |
1 |
2 |
1 |
(2a)n |
1 |
2 |
1 |
2 |
1 |
22 |
1 |
2n |
解答:解:(1)∵f(x)=
(bn+1-bn)x3-(bn-bn-1)x,∴f′(x)=(bn+1-bn)x2-(bn-bn-1),
∴f′(
)=(bn+1-bn)
-(bn-bn-1)=0,∴bn+1-bn=a(bn-bn-1)
∴数列{bn+1-bn}是以b2-b1=a2-a为首项,a为公比的等比数列,
∴bn-bn-1=(a-1)an-1
又bn=b1+b2-b1+b3-b2+…+bn-bn-1,
∴a≠1时,bn=an,当a=1时,bn=a
综上可知:bn=an…(6分)
(2)由
<a<2,可得(2a)n>1且an<2n,∴(2n+2-n)-(an+a-n)=
[(2a)n-1](2n-an)>0
∴sn<
[(2+
)+(22+
)+…+(2n+
)]
=
[2+22+23+…+2n+
+
+
+…+
]=2n-
(1+
)
又1+
>2
∴
(1+
)>(
)n
∴2n-
(1+
)<2n(
)n
∴sn<2n-(
)n…(12分)
1 |
3 |
∴f′(
1 | ||
|
1 |
a |
∴数列{bn+1-bn}是以b2-b1=a2-a为首项,a为公比的等比数列,
∴bn-bn-1=(a-1)an-1
又bn=b1+b2-b1+b3-b2+…+bn-bn-1,
∴a≠1时,bn=an,当a=1时,bn=a
综上可知:bn=an…(6分)
(2)由
1 |
2 |
1 |
(2a)n |
∴sn<
1 |
2 |
1 |
2 |
1 |
22 |
1 |
2n |
=
1 |
2 |
1 |
2 |
1 |
22 |
1 |
23 |
1 |
2n |
1 |
2 |
1 |
2n |
又1+
1 |
2n |
|
1 |
2 |
1 |
2n |
| ||
2 |
∴2n-
1 |
2 |
1 |
2n |
| ||
2 |
∴sn<2n-(
| ||
2 |
点评:本题为数列求和与不等式以及函数导数的结合,构造数列求和是解决问题的关键,属中档题.
练习册系列答案
相关题目