搜索
题目内容
椭圆的一个顶点与两个焦点构成等边三角形,则椭圆的离心率( )
A.
B.
C.
D.
试题答案
相关练习册答案
B
试题分析:由题意,设椭圆方程
,焦距为
,由题意,
,所以离心率
.
练习册系列答案
双基同步AB卷系列答案
同步训练作业本系列答案
冲刺100分单元优化练考卷系列答案
品学双优系列答案
微课程单元自测系列答案
微课程学案导学系列答案
优化全练系列答案
智汇图书计算天天练系列答案
小学同步达标单元双测AB卷系列答案
基础精练系列答案
相关题目
已知两点
及
,点
在以
、
为焦点的椭圆
上,且
、
、
构成等差数列.
(Ⅰ)求椭圆
的方程;
(Ⅱ)如图,动直线
与椭圆
有且仅有一个公共点,点
是直线
上的两点,且
,
. 求四边形
面积
的最大值.
已知抛物线
与椭圆
有公共焦点
,且椭圆过点
.
(1)求椭圆方程;
(2)点
、
是椭圆的上下顶点,点
为右顶点,记过点
、
、
的圆为⊙
,过点
作⊙
的切线
,求直线
的方程;
(3)过椭圆的上顶点作互相垂直的两条直线分别交椭圆于另外一点
、
,试问直线
是否经过定点,若是,求出定点坐标;若不是,说明理由.
在平面直角坐标系
中,已知椭圆
的左焦点为
,且椭圆
的离心率
.
(1)求椭圆
的方程;
(2)设椭圆
的上下顶点分别为
,
是椭圆
上异于
的任一点,直线
分别交
轴于点
,证明:
为定值,并求出该定值;
(3)在椭圆
上,是否存在点
,使得直线
与圆
相交于不同的两点
,且
的面积最大?若存在,求出点
的坐标及对应的
的面积;若不存在,请说明理由.
如图示:已知抛物线
的焦点为
,过点
作直线
交抛物线
于
、
两点,经过
、
两点分别作抛物线
的切线
、
,切线
与
相交于点
.
(1)当点
在第二象限,且到准线距离为
时,求
;
(2)证明:
.
已知抛物线的顶点在坐标原点,焦点在
轴上,且过点
.
(Ⅰ)求抛物线的标准方程;
(Ⅱ)与圆
相切的直线
交抛物线于不同的两点
若抛物线上一点
满足
,求
的取值范围.
椭圆
内的一点
,过点P的弦恰好以P为中点,那么这弦所在的直线方程( )
A.
B.
C.
D.
直线
过椭圆
的左焦点F,且与椭圆相交于P、Q两点,M为PQ的中点,O为原点.若△FMO是以OF为底边的等腰三角形,则直线l的方程为
.
抛物线y
2
= 2x的准线方程是( )
A.y=
B.y=-
C.x=
D.x=-
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总