题目内容
(1)化简:
.
(2)已知:sinαcosα=
,且
<α<
,求cosα-sinα的值.
| ||
|
(2)已知:sinαcosα=
1 |
4 |
π |
4 |
π |
2 |
分析:(1)原式化简成平方和,即可求解;
(2)根据sin2α+cos2α=1、完全平方差公式(a-b)2=a2-2ab+b2解答sinα-cosα的值即可.
(2)根据sin2α+cos2α=1、完全平方差公式(a-b)2=a2-2ab+b2解答sinα-cosα的值即可.
解答:解:(1)原式=
=
=
=1
(2)∵(sinα-cosα)2=sin2α-2sinαcosα+cos2α
=(sin2α+cos2α)-2sinαcosα;
又∵sin2α+cos2α=1,sinαcosα=
∴(sinα-cosα)2=1-2×
=
∵
<α<
∴cosα-sinα=-
| ||
|
| ||
sin10°-cos10° |
cos10°-sin10° |
sin10°-cos10° |
(2)∵(sinα-cosα)2=sin2α-2sinαcosα+cos2α
=(sin2α+cos2α)-2sinαcosα;
又∵sin2α+cos2α=1,sinαcosα=
1 |
4 |
∴(sinα-cosα)2=1-2×
1 |
4 |
1 |
2 |
∵
π |
4 |
π |
2 |
∴cosα-sinα=-
| ||
2 |
点评:此题考查了运用诱导公式化简求值和同角三角函数的关系,熟练掌握诱导公式是解本题的关键.
练习册系列答案
相关题目