题目内容

已知椭圆的中心为坐标原点,短轴长为2,一条准线的方程为l:x=2.
(1)求椭圆的标准方程.
(2)设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值.
(1) +y2=1   (2)见解析
(1)∵椭圆C的短轴长为2,椭圆C的一条准线为l:x=2,
∴不妨设椭圆C的方程为+y2=1.
==2,即c=1.
∴椭圆C的方程为+y2=1.
(2)F(1,0),右准线为l:x=2.设N(x0,y0),
则直线FN的斜率为kFN=,直线ON的斜率为kON=.
∵FN⊥OM,∴直线OM的斜率为kOM=-.
∴直线OM的方程为y=-x,
点M的坐标为M(2,-).
∴直线MN的斜率为kMN=.
∵MN⊥ON,∴kMNkON=-1.
·=-1.
+2(x0-1)+x0(x0-2)=0,即+=2.
∴ON=为定值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网