题目内容

已知tanα、tanβ是方程x2+3
3
x+4=0
的两根,且α、β∈(-
π
2
π
2
)
,求α+β的值.
分析:由tanα,tanβ是方程x2+3
3
x+4=0的两个根,根据韦达定理表示出两根之和与两根之积,表示出所求角度的正切值,利用两角和的正切函数公式化简后,将表示出的两根之和与两根之积代入即可求出tan(α+β)的值,然后根据两根之和小于0,两根之积大于0,得到两根都为负数,根据α与β的范围,求出α+β的范围,再根据特殊角的三角函数值,由求出的tan(α+β)的值即可求出α+β的值.
解答:解:依题意得tanα+tanβ=-3
3
<0,tanα•tanβ=4>0,
∴tan(α+β)=
tanα+tanβ
1-tanαtanβ
=
-3
3
1-4
=
3

易知tanα<0,tanβ<0,又α,β∈(-
π
2
π
2
),
∴α∈(-
π
2
,0),β∈(-
π
2
,0),
∴α+β∈(-π,0),
∴α+β=-
3
点评:此题考查学生灵活运用韦达定理及两角和的正切函数公式化简求值,是一道中档题.本题的关键是找出α+β的范围.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网