题目内容
设数列{an}的首项a1=1,前n项和Sn满足关系式.3tSn-(2t+3)Sn-1=3t(其中t>0,n=2,3,4,…)(1)求证:数列{an}是等比数列..(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f(
1 | bn-1 |
分析:(1)由已知3tSn-(2t+3)Sn-1=3t,可得3tsn-1-(2t+3)sn-2=3t,两式相减可得数列an与an-1的递推关系,从而可证.
(2)由(1)可得f(t),代入整理可得bn-bn-1=
,利用等差数列的通项公式可求.
(3)考虑到bk-bk+2=-
,从而可以把所求式两项结合,而结合的组数则根据n的值而定,从而需对n分为奇数和偶数两种情讨论.
(2)由(1)可得f(t),代入整理可得bn-bn-1=
2 |
3 |
(3)考虑到bk-bk+2=-
4 |
3 |
解答:解:(1)∵3tsn-(2t+3)sn-1=3t∴3tsn-1-(2t+3)sn-2=3t(n>2)
两式相减可得3t(sn-sn-1)-(2t+3)(sn-1-sn-2)=0
整理可得3tan=(2t+3)an-1(n≥3)
∴
=
∵a1=1∴a2=
即
=
数列{an}是以1为首项,以
为公比的等比数列
(2)由(1)可得f(t)=
在数列{bn}中,bn=f(
)=
=
=bn-1+
∴bn-bn-1=
数列{bn}以1为首项,以
为公差的等差数列
∴bn=1+(n-1)×
=
+
(3)当n为偶数时Sn=b1b2-b2b3+b3b4-…+(-1)n-1bnbn+1
=b2(b1-b3)+b4(b3-b5)+…+bn(bn-1-bn+1)
=-
( b2+ b4+…+bn)
=-
(2n2+6n)
当n为奇数时Sn=b2(b1-b3)+b4(b3-b5)+…+bn(bn-1-bn+1)+bnbn+1
=-
(b2+b4+…+ bn-1) +bnbn+1
=-
×
+
×
=
两式相减可得3t(sn-sn-1)-(2t+3)(sn-1-sn-2)=0
整理可得3tan=(2t+3)an-1(n≥3)
∴
an |
an-1 |
2t+3 |
3t |
∵a1=1∴a2=
2t+3 |
3t |
a2 |
a1 |
2t+3 |
3t |
数列{an}是以1为首项,以
2t+3 |
3t |
(2)由(1)可得f(t)=
2t+3 |
3t |
在数列{bn}中,bn=f(
1 |
bn-1 |
2
| ||
3
|
3bn-1+2 |
3 |
2 |
3 |
∴bn-bn-1=
2 |
3 |
数列{bn}以1为首项,以
2 |
3 |
∴bn=1+(n-1)×
2 |
3 |
2n |
3 |
1 |
3 |
(3)当n为偶数时Sn=b1b2-b2b3+b3b4-…+(-1)n-1bnbn+1
=b2(b1-b3)+b4(b3-b5)+…+bn(bn-1-bn+1)
=-
4 |
3 |
=-
1 |
9 |
当n为奇数时Sn=b2(b1-b3)+b4(b3-b5)+…+bn(bn-1-bn+1)+bnbn+1
=-
4 |
3 |
=-
4 |
3 |
(n+2)(n-1) |
6 |
2n+1 |
3 |
2n+3 |
3 |
=
2n2+6n+7 |
9 |
点评:本题主要考查了利用递推关系实现数列和与项的相互转化,进而求通项公式,等差数列的通项公式的运用,数列的求和,在解题中体现了分类讨论的思想.
练习册系列答案
相关题目