题目内容

已知函数.

(1)写出该函数的单调区间;

(2)若函数恰有3个不同零点,求实数的取值范围;

(3)若对所有恒成立,求实数n的取值范围。

 

【答案】

(1)单调增区间  单调递减区间是 

(2)  (3)n的取值范围是

【解析】

试题分析:(1) 由函数的图象 函数的单调递减区间是  

单调增区间是      

(2)作出直线

函数恰有3个不同零点等价于函数

与函数的图象恰有三个不同公共点。结合图形

且函数    又  f(0)="1" f(1)=

                                             

(3) 解:若要使f (x)≤n2-2bn+1对所有x∈[-1,1]恒成立 

则需 [f(x)]max≤n2-2bn+1   [f(x)]max=f(0)=1                    

∴n2-2bn+1≥1即n2-2bn≥0在b∈[-1,1]恒成立

∴y= -2nb+n2在b∈[-1,1]恒大于等于0                

,∴

∴n的取值范围是  

考点:函数图象的作法;函数的单调性及单调区间;根的存在性及根的个数判断.恒成立问题.

点评:本题考查了函数图象的作法、函数的单调性及函数零点问题,本题的解决过程充分体现了数形结合

思想的作用.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网