题目内容

在平面直角坐标系xoy中,过定点C(p,0)作直线m与抛物线y2=2px(p>0)相交于A、B两点.
(I)设N(-p,0),求
NA
NB
的最小值;
(II)是否存在垂直于x轴的直线l,使得l被以AC为直径的圆截得的弦长恒为定值?若存在,求出l的方程;若不存在,请说明理由.
分析:(Ⅰ)根据抛物线的方程得到焦点的坐标,设出直线与抛物线的两个交点和直线方程,是直线的方程与抛物线方程联立,得到关于y的一元二次方程,根据根与系数的关系,表达出两个向量的数量积.
(Ⅱ)对于存在性问题,可先假设存在,即假设满足条件的直线l存在,其方程为x=a,再利用弦长公式,求出a,p的关系式,若出现矛盾,则说明假设不成立,即不存在;否则存在.
解答:解:(I)依题意,可设A(x1,y1),B(x2,y2),直线AB的方程为:x=my+p
x=my+p
y2=2px
?y2-2pmy-2p2=0(2分)∴
y1+y2=2pm
y1y2=-2p2
NA
NB
=(x1+p,y1)•(x2+p,y2)=(x1+p)(x2+p)+y1y2
 =(my1+2p)(my2+2p)+y1y2=(m2+1)y1y2+2pm(y1+y2)+4p2
=2p2m2+2p2

当m=0时
NA
NB
的最小值为2p2.(7分)
(II)假设满足条件的直线l存在,其方程为x=a,AC的中点为o′,l与以AC为直径的圆
相交于P,Q,PQ中点为H,则o′H⊥PQ,o′的坐标为(
x1+p
2
y1
2
)
.∵|oP|=
1
2
|AC|=
1
2
(x1-p)2+y12
=
1
2
x12+p2
(9分)
∴|PH|2=|oP|2-|oH|2=
1
4
(x12+p2)-
1
4
(2a-x1-p)2
=(a-
1
2
p)x1+a(p-a)

|PQ|2=(2|PH|)2=4[(a-
1
2
p)x1+a(p-a)]
(13分)
a-
1
2
p
=0得a=
1
2
p
.此时|PQ|=p为定值.故满足条件的直线l存在,
其方程为x=
1
2
p
(15分)
点评:本题考查弦长的计算和直线与抛物线位置关系的综合运用,解题时要注意方程思想和弦长公式的合理运用,注意合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网