题目内容
(本题满分13分)
设两个向量e1、e2满足|e1|=2,|e2|=1,e1、e2的夹角为60°,若向量2te1+7e2与向量e1+te2的夹角为
钝角,求实数t的取值范围.
【答案】
t的取值范围是(-7,-)∪(-,-).
【解析】解:由已知,=|e1|2=4,=|e2|2=1,e1·e2=2×1×cos60°=1.
∴(2te1+7e2)·(e1+te2)=2t+(2t2+7)e1·e2+7t=2t2+15t+7.由2t2+15t+7<0,得-7<t<-.
由2te1+7e2=λ(e1+te2)(λ<0),得,∴.由于2te1+7e2与e1+te2的夹角为钝角,
故(2te1+7e2)·(e1+te2)<0且2te1+7e2≠λ(e1+te2)(λ<0),
故t的取值范围是(-7,-)∪(-,-).
练习册系列答案
相关题目