题目内容

.设是公比为的等比数列,,令,若数列有连续四项在集合中,则    .

分析:根据bn=an+1可知 an=bn-1,依据{bn}有连续四项在{-53,-23,19,37,82}中,则可推知则{an}有连续四项在{-54,-24,18,36,81}中,按绝对值的顺序排列上述数值,可求{an}中连续的四项,求得q
解:{bn}有连续四项在{-53,-23,19,37,82}中且bn=an+1 an=bn-1
则{an}有连续四项在{-54,-24,18,36,81}中
∵{an}是等比数列,等比数列中有负数项则q<0,且负数项为相隔两项
∴等比数列各项的绝对值递增或递减,按绝对值的顺序排列上述数值18,-24,36,-54,81}
相邻两项相除-=-,-=-,-=-=-
则可得,-24,36,-54,81是{an}中连续的四项,此时q=-
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网