题目内容
已知函数f(x)=2sin(
x-
),x∈R,设α,β∈[0,
],f(3α+
)=
,f(3β+2π)=
,求cosαcosβ-sinαsinβ的值.
1 |
3 |
π |
6 |
π |
2 |
π |
2 |
10 |
13 |
6 |
5 |
分析:由于f(3α+
)=2sinα=
,可得sinα=
,结合α∈[0,
],求得 cosα=
.同理求得cosβ=
,sinβ=
.由此求得cosαcosβ-sinαsinβ 的值.
π |
2 |
10 |
13 |
5 |
13 |
π |
2 |
12 |
13 |
3 |
5 |
4 |
5 |
解答:解:由于f(3α+
)=2sinα=
,∴sinα=
,再由 α∈[0,
],可得 cosα=
.
再由 f(3β+2π)=2sin(β+
)=2cosβ=
,
∴cosβ=
,再由β∈[0,
],可得sinβ=
.
∴cosαcosβ-sinαsinβ=
×
-
×
=
.
π |
2 |
10 |
13 |
5 |
13 |
π |
2 |
12 |
13 |
再由 f(3β+2π)=2sin(β+
π |
2 |
6 |
5 |
∴cosβ=
3 |
5 |
π |
2 |
4 |
5 |
∴cosαcosβ-sinαsinβ=
12 |
13 |
3 |
5 |
5 |
13 |
4 |
5 |
16 |
65 |
点评:本题主要考查三角函数的恒等变换及化简求值,属于中档题.
练习册系列答案
相关题目