题目内容
研究硫及其化合物的性质有重要意义。
(1)Cu2S在高温条件下发生如下反应:
2Cu2S(s)+3O2(g)=2Cu2O(s)+2SO2(g) ⊿H=-773kJ/mol
当该反应有1.2mol电子转移时,反应释放出的热量为 kJ。
(2)硫酸工业生产中涉及反应:2SO2(g)+O2(g)2SO3(g),SO2的平衡转化率与温度、压强的关系如右图所示。
①压强:P1 P2(填“>”、“=”或“<”)。
②平衡常数:A点 B点(填“>”、“=”或“<”)。
③200℃下,将一定量的SO2和O2充入体积不变的密闭容器中,经10min后测得容器中各物质的物质的量浓度如下表所示:
气体 | SO2 | O2 | SO3 |
浓度(mol/L) | 0.4 | 1.2 | 1.6 |
能说明该反应达到化学平衡状态的是 。
a.SO2和O2的体积比保持不变
b.体系的压强保持不变
c.混合气体的密度保持不变
d.SO2和SO3物质的量之和保持不变
计算上述反应在0~10min内,υ(O2)= 。
(3)一定温度下,用水吸收SO2气体时,溶液中水的电离平衡 移动(填“向左”“向右”或“不”);若得到pH=3的H2SO3溶液,试计算溶液中 。(已知该温度下H2SO3的电离常数:Ka1=1.0×10-2 mol/L,Ka2=6.0×10-3 mol/L)
(14分)(1)77.3(2分)
(2)①<(2分) ② =(2分) ③ a b(2分) 0.08mol·L-1·min-1(2分)
(3)向左 (2分);或0.17(2分)
解析试题分析:(1)根据热化学方程式2Cu2S(s)+3O2(g)=2Cu2O(s)+2SO2(g) ⊿H=-773kJ/mol可知,每放出773kJ能量,反应中就转移12mol电子(氧气是氧化剂,1分子氧气得到4个电子),所以当该反应有1.2mol电子转移时,反应释放出的热量为×773kJ/mol=77.3kJ。
(2)①根据图像可知,在温度相同时,P2曲线表示的SO2转化率大于P1曲线表示的SO2转化率。由于正反应是体积减小的可逆反应,增大压强平衡向正反应方向移动,SO2转化率增大,所以压强是P1<P2。
②对于特定的可逆反应,平衡常数只与温度有关系,A、B两点的温度相同,所以两点对应的平衡常数相等。
③在一定条件下,当可逆反应的正反应速率和逆反应速率相等时(但不为0),反应体系中各种物质的浓度或含量不再发生变化的状态,称为化学平衡状态。根据表中数据可知,反应前SO2和氧气的(0.4+1.6)mol/L=2.0mol/L和(1.2+1.6÷2)mol/L=2.0mol/L,即反应物的起始浓度不是按照化学计量数之比冲入的,所以当SO2和O2的体积比保持不变时,可以说明反应调动平衡状态,a正确;该反应是体积减小的可逆反应,所以容器内气体的压强是减小的,因此当压强不再发生变化时,可以说明达到平衡状态,b正确;密度是混合气的质量和容器容积的比值,在反应过程中气体的质量和容积始终是不变的,因此密度始终是不变的,因此选项c不能说明;根据S原子守恒可知,SO2和SO3物质的量之和始终保持不变,d不能说明,答案选ab。在0~10min内,氧气的浓度减少0.8mol/L,则υ(O2)=0.8mol/L÷10min=0.08mol·L-1·min-1。
(3)SO2溶于水生成亚硫酸,亚硫酸是酸,电离出氢离子,抑制水的电离,则溶液中水的电离平衡向左移动。根据亚硫酸的第二步电离方程式HSO3-+H2OSO32-+H+可知,Ka2=,则===或0.17。
考点:考查反应热的计算、外界条件对平衡状态的影响、平衡状态的判断、平衡常数的应用、反应速率的计算。外界条件对水电离平衡的影响、电离常数的计算和应用
金属钨用途广泛,主要用于制造硬质或耐高温的合金,以及灯泡的灯丝。高温下,在密闭容器中用H2还原WO3可得到金属钨,其总反应为:
WO3 (s) + 3H2 (g)W (s) + 3H2O (g)
请回答下列问题:
⑴上述反应的化学平衡常数表达式为___________________________。
⑵某温度下反应达平衡时,H2与水蒸气的体积比为2:3,则H2的平衡转化率为_____________________;随温度的升高,H2与水蒸气的体积比减小,则该反应为反应_____________________(填“吸热”或“放热”)。
⑶上述总反应过程大致分为三个阶段,各阶段主要成分与温度的关系如下表所示:
温度 | 25℃ ~ 550℃ ~ 600℃ ~ 700℃ |
主要成份 | WO3 W2O5 WO2 W |
第一阶段反应的化学方程式为___________________________;580℃时,固体物质的主要成分为________;假设WO3完全转化为W,则三个阶段消耗H2物质的量之比为____________________________________。
⑷ 已知:温度过高时,WO2 (s)转变为WO2 (g);
WO2 (s) + 2H2 (g) W (s) + 2H2O (g);ΔH = +66.0 kJ·mol-1
WO2 (g) + 2H2(g) W (s) + 2H2O (g);ΔH = -137.9 kJ·mol-1
则WO2 (s) WO2 (g) 的ΔH = ______________________。
⑸钨丝灯管中的W在使用过程中缓慢挥发,使灯丝变细,加入I2可延长灯管的使用寿命,其工作原理为:W (s) +2I2 (g)WI4 (g)。下列说法正确的有____________。
a.灯管内的I2可循环使用
b.WI4在灯丝上分解,产生的W又沉积在灯丝上
c.WI4在灯管壁上分解,使灯管的寿命延长
d.温度升高时,WI4的分解速率加快,W和I2的化合速率减慢
合成氨工业对国防具有重要意义,如制硝酸、合成纤维以及染料等
(1)已知某些化学键的键能数据如下表:
化学键 | N≡N | H—H | N—H |
键能kJ·mol-1 | 946 | 436 | 390 |
合成氨的热化学反应方程式为 。
(2)常温下,向饱和NaCl与饱和氨水的混合溶液中通入过量CO2,有NaHCO3固体析出,该反应的化学方程式为 ;所得溶液中离子的电荷守恒式是 ;若向饱和NaCl与饱和CO2的混合溶液中通入氨气,则没有NaHCO3固体析出,原因是 。
(3)氨氮废水(含NH3、NaOH和Na2SO4)超标排放会造成水体富营养化。右图通过直接电化学氧化法有效除去某工厂氨气。其中阴离子的流动方向为 (填“向a极”或“向b极”),电解过程中,b极区的pH (填“增大”或“减小”或“不变”),阳极反应方程式为 。
甲醇是一种常用的燃料,工业上可以用CO和H2在一定条件下合成甲醇。
(1)已知CO(g)、H2(g)、CH3OH(1)的燃烧热△H分别为:-283.0kJ/mol、-285.8 kJ/mol、-726.5kJ/mol,则CO合成甲醇的热化学方程式为: 。
(2)在恒容密闭容器中CO与H2发生反应生成甲醇,各物质浓度在不同条件下的变化状况如图所示(开始时氢气的浓度曲线和8分钟后甲醇的浓度曲线未画出。4分钟和8分钟改变的条件不同):
①下列说法正确的是
A.起始时n(H2)为1.7mol |
B.当容器内压强恒定时,说明反应达到平衡状态 |
C.4分钟时,改变的条件是升高温度 |
D.7分钟时,v(CO)=v(CH3OH) |
③在3min时该反应的平衡常数K= (计算结果)
④在图中画出8~12min之间c(CH3OH)曲线
(2)2009年,中国在甲醇燃料电池技术上获得突破,组装了自呼吸电池及主动式电堆,其装置原理如图甲。
①该电池的负极反应式为: 。
②乙池是一铝制品表面“钝化”装置,两极分别为铝制品和石墨。
M电极的材料是 ,该铝制品表面“钝化”时的反应式为: 。
乙醇汽油是被广泛使用的新型清洁燃料,工业生产乙醇的一种反应原理为:
2CO(g) + 4H2(g)CH3CH2OH(g) + H2O(g) △H =" —256.1" kJ·mol-1
已知:CO(g) + H2O(g)CO2(g)+H2(g) △H=" —41.2" kJ·mol-1
(1)以CO2(g)与H2(g)为原料也可合成乙醇,其热化学方程式如下:
2CO2(g) +6H2(g)CH3CH2OH(g) +3H2O(g) △H = 。
(2)汽车使用乙醇汽油并不能减少NOx的排放,这使NOx的有效消除成为环保领域的重要课题。
①某研究小组在实验室以Ag– ZSM– 5为催化剂,测得NO转化为N2的转化率随温度变化情况如下图。若不使用CO,温度超过800℃,发现NO的转化率降低,其可能的原因为 ;在n(NO)/n(C O)=1的条件下,应控制的最佳温度在 左右。
②用活性炭还原法处理氮氧化物。有关反应为:C (s) +2NO2(g) N2 (g) + CO2 (g)。某研究小组向某密闭容器中加人足量的活性炭和NO,恒温( T1℃)条件下反应,反应进行到不同时间测得各物质的浓度如下:
浓度/mol?L-1 时间/min | NO | N2 | CO2 |
0 | 1.00 | 0 | 0 |
20 | 0.40 | 0.30 | 0.30 |
30 | 0.40 | 0.30 | 0.30 |
40 | 0.32 | 0.34 | 0.17 |
50 | 0.32 | 0.34 | 0.17 |
I.根据表中数据,求反应开始至20min以v(NO)表示的反应速率为 (保留两位有效数字),T1℃时该反应的平衡常数为 (保留两位有效数字)。
II.30min后,改变某一条件,反应重新达到平衡,则改变的条件可能是 。下图表示CO2的逆反应速率[v逆(CO2)]随反应时间的变化关系图。请在图中画出在30min改变上述条件时,在40min时刻再次达到平衡的变化曲线。