【题目】初三某班同学小代想根据学习函数的经验,探究函数的图象和性质,下面是他的探究过程,请补充完整:
(1)函数的自变量的取值范围是 ;
(2)下表是函数与自变量的几组对应值:
-3 | -2 | -1 | 0 | 1 | 3 | 4 | 5 | 6 | 7 | |||
0.6 | m | 1 | 1.5 | 3 | n | 1.5 | 1 | 0.75 | 0.6 |
则m= ,n= ;
(3)在平面直角坐标系xoy中,补全此函数的图象:
(4)根据函数图象,直接写出不等式的解集 ;
(5)若函数与函数y=x+k图象有三个不同的交点,则k的取值范围是 .
【题目】蔬菜基地为选出适应市场需求的西红柿秧苗,在条件基本相同的情况下,将甲、乙两个品种的西红柿秧苗各500株种植在同一个大棚.对市场最为关注的产量进行了抽样调查,随机从甲、乙两个品种的西红柿秧苗中各收集了50株秧苗上的挂果数(西红柿的个数),并对数据(个数)进行整理、描述和分析,下面给出了部分信息.
a. 甲品种挂果数频数分布直方图(数据分成6组:25≤x<35,35≤x<45,45≤x<55,55≤x<65,65≤x<75,75≤x<85).
b. 甲品种挂果数在45≤x<55这一组的是:
45,45,46,47,47,49,49,49,49,50,50,51,51,54
c. 甲、乙品种挂果数的平均数、中位数、众数如下:
品种 | 平均数 | 中位数 | 众数 | 方差 |
甲 | 49.4 | m | 49 | 1944.2 |
乙 | 48.6 | 48.5 | 47 | 3047 |
根据以上信息,回答下列问题:
(1)表中m= ;
(2)试估计甲品种挂果数超过49个的西红柿秧苗的数量;
(3)可以推断出 品种的西红柿秧苗更适应市场需求,理由为 (至少从两个不同的角度说明推断的合理性).
【题目】如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是_______.