【题目】如图,抛物线与轴交于两点(点在点的左侧),与轴交于点连接点是第一象限内抛物线上的一个动点,点的横坐标为,过点作轴,垂足为点交于点过点作交轴于点,交于点.
(1)求三点的坐标;
(2)试探究在点运动过程中,是否存在这样的点使得以点为顶点的三角形是等腰三角形,若存在,请求出此时点的坐标;若不存在,请说明理由;
(3)m是点的横坐标,请用含的代数式表示线段的长,并求出为何值时有最大值.
【题目】如图,为⊙的直径,,为圆上的两点,,弦,相交于点,
(1)求证:
(2)若,,求⊙的半径;
(3)在(2)的条件下,过点作⊙的切线,交的延长线于点,过点作交⊙于, 两点(点在线段上),求的长.
【题目】随着“和谐号”列车缓缓停靠在梅州西站,我市正式进入了高铁时代.与普通列车相比,“和谐号”列车时速更快,安全性更好.已知“梅州西—广州南”全程大约千米,“和谐号”次列车平均每小时比普通列车多行驶千米,其行驶时间是普通列车行驶时间的(两列车中途停留时间均除外).
(1)经查询,“和谐号”次列车从梅州西到广州南,中途合计停站时间为分钟,求乘坐“和谐号”次列车从梅州西到广州南需要多长时间;
(2)据了解,梅州西站后期还会引进更快的“复兴号”高铁,届时跑完千米的路程最多只需要小时,请问“复兴号”高铁的速度每小时至少比“和谐号”列车快了多少千米.
【题目】如图,正方形中,和是对角线,作交延长线于点,连接交于点,则下列结论:①四边形是平行四边形;②;③;④,正确的个数是( )
A.B.C.D.
【题目】如图,已知顶点为的抛物线过点,交轴于两点,交轴于点,点是抛物线上一动点.
求抛物线的解析式;
当点在直线上方时,求面积的最大值,并求出此时点的坐标;
过点作直线的垂线,垂足为,若将沿翻折点的对应点为点.是否存在点,使恰好落在轴上?若存在,求出点的坐标:若不存在,说明理由.
【题目】如图,四边形内接于为直径, .
过点作于点交的延长线于点,连接交于点.
求证: 是的切线;
若点为的中点,求证:
若,求的长.
【题目】某公司用6000元购进A,B两种电话机25台,购买A种电话机与购买B种电话机的费用相等.已知A种电话机的单价是B种电话机单价的1.5倍.
(1)求A,B两种电话机的单价各是多少?
(2)若计划用不超过8000元的资金再次购进A,B两种话机共30台,已知A,B两种电话机的进价不变,求最多能购进多少台A种电话机?
【题目】如图,已知平行四边形ABCD.
(1)若M,N是BD上两点,且BM=DN,AC=2OM,求证:四边形AMCN是矩形;
(2)若∠BAD=120°,CD=4,AB⊥AC,求平行四边形ABCD的面积.
【题目】随着人民生活水平的提高和环境的不断改善,带动了旅游业的发展.某市旅游景区有A,B,C,D四个著名景点,该市旅游部门统计绘制出2019年游客去各景点情况统计图,根据给出的信息解答下列问题:
(1)2019年该市旅游景区共接待游客 万人,扇形统计图中C景点所对应的圆心角的度数是 度;
(2)把条形统计图补充完整;
(3)甲,乙两位同学去该景区旅游,用树状图或列表法,求甲,乙两位同学在A,B,D三个景点中,同时选择去同一景点的概率.