【题目】小明研究一函数的性质,下表是该函数的几组对应值:
··· | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | ···· | |
··· | 8 | 3 | 0 | -1 | 0 | 3 | 0 | -3 | -6 | ···· |
在平面直角坐标系中,描出以上表格中的各点,根据描出的点,画出该函数图象
根据所画函数图象,写出该函数的一条性质: ;
根据图像直接写出该函数的解析式及自变量的取值范围: ;
若一次函数与该函数图像有三个交点,则的范围是
【题目】某中学初三年级积极推进走班制教学.为了了解一段时间以来,“至善班”的学习效 果,年级组织了多次定时测试,现随机选取甲、乙两个“至善班”,从中各抽取名同学在某一次定时测试中的数学成绩,其结果记录如下:
收集数据:
“至善班”甲班的名同学的数学成绩统计(满分为 100 分)(单位:分)
“至善班”乙班的名同学的数学成绩统计(满分为 100 分)(单位:分)
整理数据:(成绩得分用表示)
分数 数量 班级 | |||||
甲班(人数) | 1 | 3 | 4 | 6 | 6 |
乙班(人数) | 1 | 1 | 8 | 6 | 4 |
分析数据,并回答下列问题:
完成下表:
平均数 | 中位数 | 众数 | |
甲班 | |||
乙班 |
在“至善班”甲班的扇形图中, 成绩在的扇形中,所对的圆心角的度数为 . 估计全部“至善班”的人中优秀人数为 人.(分及以上为优秀).
根据以上数据,你认为“至善班” 班(填“甲”或“乙”)所选取做样本 的同学的学习效果更好一些,你所做判断的理由是:
①
②