【题目】已知二次函数y=-x2+(m+1)x-m(m为常数).
(1)求证:不论m为何值,该二次函数的图像与x轴总有公共点;
(2)若该二次函数的图像与x轴交于不同的两点A、B,与y轴交于点C,且AB2=2OC2(O为坐标原点),求m的值.
【题目】如图,AB是半圆O的直径,C、D是半圆O上的两个点,且D是弧BC的中点,OD与BC交于点E,连接AC.
(1)若∠A=70°,求∠CBD的度数;
(2)若DE=2,BC=6,求半圆O的半径.
【题目】如图,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AB与DE相交于点F,连接DB、CE.
(1)若,求∠AFD的度数;
(2)若∠ADE=∠ABC,求证△ADB∽△AEC.
【题目】如图,已知二次函数y=ax2+bx+3的图像经过点A(1,0),B(-2,3).
(1)求该二次函数的表达式;
(2)求该二次函数的最大值;
(3)结合图像,解答问题:当y>3时,x的取值范围是 .
【题目】为了丰富学生的课余生活,拓展学生的视野,某学校开设了特色选修课程.本学期该校共开设A、B、C三类课程,如下表所示.
(1)若小明从A类课程中随机选择一门课程,则他恰好选中“合唱”的概率是 .
(2)若小明分别从B类课程和C类课程中各随机选择一门课程,求他恰好选中“汉字的故事”和“乒乓球”的概率.
【题目】已知二次函数y=-2(x-1)(x-m+3)(m为常数),则下列结论正确的有( )
①抛物线开口向下; ②抛物线与y轴交点坐标为(0,-2m+6);
③当x<1时,y随x增大而增大;④抛物线的顶点坐标为(,).
A. 1个 B. 2个 C. 3个 D. 4个
【题目】已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.
(1)求此二次函数解析式;
(2)连接DC、BC、DB,求证:△BCD是直角三角形;
(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.
【题目】如图,在等腰△ABC中,AB=AC,AD⊥BC,垂足为D,以 AD为直径作⊙O,⊙O分别交AB、AC于 E、F.
(1)求证:BE=CF;
(2)设 AD、EF相交于G,若 EF=8,⊙O的半径为5,求DG的长.
【题目】如图所示,已知A(,y1),B(2,y2)为反比例函数图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是( )
A. (,0) B. (1,0) C. (,0) D. (,0)
【题目】如图,正方形ABCD的边长为1,分别以顶点A、B、C、D为圆心,1为半径画弧,四条弧交于点E、F、G、H,则图中阴影部分的外围周长为_____.