【题目】如图,将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF,∠ABC=α=60°,BF=AF.
(1)求证:DA∥BC;
(2)猜想线段DF、AF的数量关系,并证明你的猜想.
【题目】综合与探究
如图,等腰直角中,,,现将该三角形放置在平面直角坐标系中,点坐标为,点坐标为.
(1)过点作轴,求的长及点的坐标;
(2)连接,若为坐标平面内异于点的点,且以、、为顶点的三角形与全等,请直接写出满足条件的点的坐标;
(3)已知,试探究在轴上是否存在点,使是以为腰的等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.
【题目】正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:
(1)试作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;点B1的坐标为 ;
(2)作△ABC关于原点O成中心对称的△A2B2C2;点B2的坐标为 .
【题目】如下图,正方形ABCD的边AB在x轴上,A(﹣4,0),B(﹣2,0),定义:若某个抛物线上存在一点P,使得点P到正方形ABCD四个顶点的距离相等,则称这个抛物线为正方形ABCD的“友好抛物线”.若抛物线y=2x2﹣nx﹣n2﹣1是正方形ABCD的“友好抛物线”,则n的值为_____.
【题目】综合与实践
(1)实践操作:中,,为直线上一点,过点作,与直线相交于点,如图①,图②,图③所示,则的形状为______.
(2)问题解决:等腰三角形是一种特殊的三角形,常与全等三角形的相关知识结合在一起解决问题.如图④,中,,为上一点,为延长线上一点,且,交于,求证:.
(3)拓展与应用,在(2)的条件下,如图⑤,过点作的垂线,垂足为,若,则的长为______.
【题目】如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是( )
A. 3cm B. cm C. 2.5cm D. cm
【题目】如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.
(1)求抛物线的函数解析式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式;
②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.
【题目】如图所示,边长为1的正方形网格中,的三个顶点、、都在格点上.
(1)作关于关于轴的对称图形,(其中、、的对称点分别是、、),并写出点坐标;
(2)为轴上一点,请在图中画出使的周长最小时的点(不写画法,保留画图痕迹),并直接写出点的坐标.
【题目】如图,AB是⊙O的直径,PB与⊙O相切于点B,连接PA交⊙O于点C,连接BC.
(1)求证:∠BAC=∠CBP;
(2)求证:PB2=PCPA;
(3)当AC=6,CP=3时,求sin∠PAB的值.
【题目】如图,D、E、F分别为BC、AD、BE的中点,若△BFD的面积为6,则 △ABC的面积等于_____________.