【题目】如图,在边长为1的小正方形组成的方格纸中,有一个以格点为顶点的△ABC.
(1)△ABC的形状是 .
(2)利用网格线画△A′B′C′,使它与△ABC关于直线l对称.
(3)在直线l上求作点P使AP+CP的值最小,则AP+CP的最小值= .
【题目】如图,△ABC中,∠C=90°,点D为AC上一点,∠ABD=2∠BAC=45°,若AD=12,则△ABD的面积为____.
【题目】如图,O是等边三角形ABC内一点,∠AOB=110°,∠BOC=m°,D是△ABC外一点,且△ADC≌△BOC,连接OD.当m为_____时,△AOD是等腰三角形.
【题目】已知:如图1所示,等腰直角三角形ABC中,∠BAC=90O,AB=AC,直线MN经过点A,BD⊥MN于点D,CE⊥MN于点E.
(1)试判断线段DE、BD、CE之间的数量关系,并说明理由;
(2)当直线MN运动到如图2所示位置时,其余条件不变,判断线段DE、BD、CE之间的数量关系。
【题目】如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.
(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为________;
(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解)
【题目】如图,等边的边长为,点从点出发,以秒的速度由向匀速运动,点从点出发,以秒的速度由向匀速运动,、交于点,当点到达点时,、两点停止运动,设、两点运动的时间为秒,若时,则的值是( )
A.B.C.D.
【题目】如图,△ABC中,AB=AC=2,∠B=∠C=40°.点D在线段BC上运动(点D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.
(1)当∠BAD=20°时,∠EDC= °;
(2)当DC等于多少时,△ABD≌△DCE?试说明理由;
(3)△ADE能成为等腰三角形吗?若能,请直接写出此时∠BAD的度数;若不能,请说明理由
【题目】如图,四边形ABCD为矩形,H、F分别为AD、BC边的中点,四边形EFGH为矩形,E、G分别在AB、CD边上,则图中四个直角三角形面积之和与矩形EFGH的面积之比为_____.
【题目】如图,平面直角坐标系xoy中A(﹣4,6),B(﹣1,2),C(﹣4,1).
(1)作出△ABC关于直线x=1对称的图形△A1B1C1并写出△A1B1C1各顶点的坐标;
(2)将△A1B1C1向左平移2个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标
【题目】如图所示,点D在AC上,点E在AB上,且AB=AC,BC=BD,AD=DE=EB,求∠A的度数.