【题目】在下列的网格图中.每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;
(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;
(3)根据(2)中的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.
【题目】放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离和放学后的时间之间的关系如图所示,给出下列结论:①小刚家离学校的距离是;②小刚跑步阶段的速度为;③小刚回到家时已放学10分钟;④小刚从学校回到家的平均速度是.其中正确的个数是( )
A.4B.3C.2D.1
【题目】(1)解方程x2﹣4x=12;
(2)如图,△ABP是由△ACE绕A点旋转得到的,若∠APB=110°,∠B=30°,∠PAC=20°,求旋转角的度数.
【题目】关于函数的图象,下列结论错误的是( )
A.图象经过一、二、四象限
B.与轴的交点坐标为
C.随的增大而减小
D.图象与两坐标轴相交所形成的直角三角形的面积为
【题目】在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B20A21B21的顶点A21的坐标是_____.
【题目】如图,已知, ,且,满足,为第一象限内一点,连接,连接交轴于点,且.
(1)求、两点的坐标;
(2)如图①,若的面积为20,求点的坐标;
(3)如图②,在第四象限内过点作轴,且,连接.求证:, 且.
【题目】一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图像可能是 ( )
A. B. C. D.
【题目】如图,AB是以O为圆心的半圆的直径,半径CO⊥AO,点M是上的动点,且不与点A、C、B重合,直线AM交直线OC于点D,连结OM与CM.
(1)若半圆的半径为10.
①当∠AOM=60°时,求DM的长;
②当AM=12时,求DM的长.
(2)探究:在点M运动的过程中,∠DMC的大小是否为定值?若是,求出该定值;若不是,请说明理由.
【题目】如图,△ABC内接于⊙O,∠B=600,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.
(1)求证:PA是⊙O的切线;
(2)若PD=,求⊙O的直径.
【题目】一家用电器开发公司研制出一种新型电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件为了增加销量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件.
求出月销售量万件与销售单价元之间的函数关系式;
求出月销售利润万元与销售单价元之间的函数关系式;
若该月销售利润为480万元,求此时的月销售量和销售单价各是多少元?