【题目】如图,已知⊙O中,AB为弦,直线PO交⊙O于点M、N,PO⊥AB于C,过点B作直径BD,连接AD、BM、AP.
(1)求证:PM∥AD;
(2)若∠BAP=2∠M,求证:PA是⊙O的切线;
(3)若AD=6,tan∠M=,求⊙O的直径.
【题目】如图,已知一次函数y=x+m的图象与x轴交于点A(﹣4,0),与二次函数y=ax2+bx+c的图象交于y轴上一点B,该二次函数的顶点C在x轴上,且OC=2.
(1)求点B坐标;
(2)求二次函数y=ax2+bx+c的解析式;
(3)设一次函数y=x+m的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD是以BD为直角边的直角三角形,求点P的坐标.
【题目】对于给定的函数,自变量取x1,x2时,对应的函数值分别记为y1,y2.自变量取时.对应的函数值记为,例如一次函数y=2x+1,自变量取x1,x2时,对应的函数值分别为y1=2x1+1,y2=2x2+1,自变量取时,对应的函数值为=2+1,若对于给定的函数,自变量取x1,x2(x1≠x2)时,总有,则称函数为凸凸函数.对于给定的函数总有,则称函数为凹凹函数.对于给定的函数总有,则称函数为平平函数.
(1)求证:函数y=2x是平平函数;
(2)判断函数y=ax2是凸凸函数,凹凹函数还是平平函数.
【题目】如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.
(1)求证:EB=GD;
(2)若AB=5,AG=2,求EB的长.
【题目】某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:
(1)九(1)班的学生人数为 ,并把条形统计图补充完整;
(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是 度;
(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.
【题目】校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使∠CAD=300,∠CBD=600.
(1)求AB的长(精确到0.1米,参考数据:);
(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.
【题目】如图,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,将△ABC以点B为中心顺时针旋转,使点C旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是_____cm2.(结果保留π).
【题目】已知,如图在ABCD中,点E为AB上一点,连接CE、DE,且CE⊥AB,CE=AB,点F为BC上一点,连接DF交CE于点G,∠CGD=∠B;
(1)若CG=2,AD=3,求GE的长;
(2)若CF=DE,求证:AD=CG+BE.
【题目】如图,在平面直角坐标系中,反比例函数y= (x>0)的图象交矩形OABC的边AB于点D,交BC于点E,且BE=2EC,若四边形ODBE的面积为8,则k=_____.
【题目】在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H.∠CBE=∠BAD,有下列结论:①FD=FE;②AH=2CD;③BCAD=AE2;④S△BEC=S△ADF.其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个