题目内容
如图,E、F是平行四边形ABCD的对角线AC上的点,CE=AF,请你猜想:线段BE与线段DF有怎样的关系?并对你的猜想加以证明.
猜想:BE∥DF且BE=DF.
证明:∵四边形ABCD是平行四边形,
∴CB=AD,CB∥AD,
∴∠BCE=∠DAF,
在△BCE和△DAF
,
∴△BCE≌△DAF,
∴BE=DF,∠BEC=∠DFA,
∴BE∥DF,
即BE∥DF且BE=DF.
证明:∵四边形ABCD是平行四边形,
∴CB=AD,CB∥AD,
∴∠BCE=∠DAF,
在△BCE和△DAF
|
∴△BCE≌△DAF,
∴BE=DF,∠BEC=∠DFA,
∴BE∥DF,
即BE∥DF且BE=DF.
练习册系列答案
相关题目