题目内容
【题目】如图,已知△ABC是等腰直角三角形,AB=AC,AD是斜边的中线,E、F分别是AB、AC边上的点且DE⊥DF.
(1)求证:△AED≌△CFD;
(2)若BE=8,CF=6,求△DEF的面积;
(3)若AB=a,AE=x,请用含x,a的代数式表示△DEF的面积S.
【答案】见解析
【解析】
(1)由△ABC是等腰直角三角形,AB=AC,AD是斜边的中线,可得:AD=DC,∠EAD=∠C=45°,AD⊥BC即∠CDF+∠ADF=90°,又DE⊥DF,可得:∠EDA+∠ADF=90°,故∠EDA=∠CDF,从而可证:△AED≌△CFD;
(2)由(1)知:AE=CF,AF=BE,DE=DF,即△EDF为等腰直角三角形,在Rt△AEF中,运用勾股定理可将EF的值求出,进而可求出DE、DF的值,
(3),由,可解.
∵ABC是等腰直角三角形,AD是斜边的中线,
∴AD=AC,EAD=C=45 ,ADBC,
∴CDF+ADF=90,
又DEDF, ∴EDA+ADF=90,故EDA=CDF,
在AED和CFD中 ,
∴△AED≌△CFD .
(2)由(1)知:AE=CF,AF=BE,DE=DF,即△EDF为等腰直角三角形,在Rt△AEF中,EF=
∴DE2+DF2=102 ∴DE=DF=
∴ .
(3)AF=BE=a-x , AE=CF=x ,
DE2 == ,
∴EDF= DE2= = = .
练习册系列答案
相关题目