题目内容
【题目】如图1,∠AOB=90°,OC平分∠AOB,以C为顶点作∠DCE=90°,交OA于点D,OB于点E.
(1)求证:CD=CE;
(2)图1中,若OC=3,求OD+OE的长;
(3)如图2,∠AOB=120°,OC平分∠AOB,以C为顶点作∠DCE=60°,交OA于点D,OB于点E.若OC=3,求四边形OECD的面积.
【答案】(1)证明见解析;(2);(3).
【解析】
(1)过点C作CG⊥OA于G,CH⊥OB于H,证明△CDG≌△CEH,可得结论;
(2)由(1)可得DG=HE,设OH=CH=x,在Rt△OCH中,由勾股定理求出OH,则OD+OE=2OH=;
(3)过点C作CG⊥OA于G,CH⊥OB于H,可得∠CDG=∠CEO,证明△CDG≌△CEH,可得DG=HE,求出OH=,CH=,根据S四边形OECD=2S△OCG可求出答案.
(1)证明:如图1,过点C作CG⊥OA于G,CH⊥OB于H,
∵OC平分∠AOB,
∴CG=CH
∵∠AOB=90°,∠DCE=90°,
∴∠CDO+∠CEO=180°,
∵∠CDG+∠CDO=180°,
∴∠CDG=∠CEO,
在△CDG与△CEH中
,
∴△CDG≌△CEH(AAS),
∴CD=CE;
(2)解:由(1)得△CDG≌△CEH,
∴DG=HE,
∵
∴△OCG与△OCH是全等的等腰直角三角形,且OG=OH,
∴OD+OE=OD+OH+HE=OG+OH=2OH,
设OH=CH=x,在Rt△OCH中,由勾股定理,得:
OH2+CH2=OC2
∴x2+x2=32
∴(舍负)
∴OH=
∴OD+OE=2OH=;
(3)解:如图,过点C作CG⊥OA于G,CH⊥OB于H,
∵OC平分∠AOB,
∴CG=CH,
∵∠AOB=120°,∠DCE=60°,
∴∠CDO+∠CEO=180°,
∵∠CDG+∠CDO=180°,
∴∠CDG=∠CEO,
在△CDG与△CEH中
,
∴△CDG≌△CEH(AAS),
∴DG=HE,
∵OC平分∠AOB,CG⊥OA, CH⊥OB
∴△OCG与△OCH是全等的直角三角形,且OG=OH,
∴OD+OE=OD+OH+HE=OG+OH=2OH,
∴S四边形OECD=S四边形OHCG=2S△OCG
在Rt△OCH中,有∠COH=60°,OC=3,
∴OH=,CH=
∴,
∴S四边形OECD=2S△OCG=.
【题目】祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.
项目 | 内容 | ||
课题 | 测量斜拉索顶端到桥面的距离 | ||
测量示意图 | 说明:两侧最长斜拉索AC,BC相交于点C,分别与桥面交于A,B两点,且点A,B,C在同一竖直平面内. | ||
测量数据 | ∠A的度数 | ∠B的度数 | AB的长度 |
38° | 28° | 234米 | |
… | … |
(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)
(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).