题目内容
【题目】如图1为放置在水平桌面上的台灯的平面示意图,灯臂AO长为50cm,与水平桌面所形成的夹角∠OAM 为75°.由光源O射出的边缘光线OC,OB 与水平桌面所形成的夹角∠OCA,∠OBA分别为90°和30°.(不考虑其他因素,结果精确到0.1cm.sin75°≈0.97,cos75°≈0.26,≈1.73)
(1)求该台灯照亮水平桌面的宽度BC.
(2)有人在此台灯下看书,将其侧面抽象成如图2所示的几何图形,若书EF与水平桌面的夹角∠EFC为60°,书的长度EF为24cm,点P为眼睛所在位置,点P在EF的垂直平分线上,且到EF距离约为34cm,求眼睛到水平桌面的距离.
【答案】(1)该台灯照亮水平面的宽度BC大约是83.9cm;(2)眼睛到水平桌面的距离大约是27.38cm.
【解析】
(1)在直角三角形ACO中,根据sin75°= ,求出OC,在直角三角形BCO中,tan30°= ,求出BC即可.
(2)如图,过点P作PH⊥AB于H,交OB于M,过点D作DG⊥PH于G,DQ⊥AB于Q,则四边形DGHQ为矩形,∠GDF=∠EFC=∠DPG=60°,求出PH的长即可求解.
(1)在直角三角形ACO中,sin75°= ,
解得OC=50×0.97≈48.5,
在直角三角形BCO中,tan30°= ,
解得BC=1.73×48.5≈83.9.
答:该台灯照亮水平面的宽度BC大约是83.9cm;
(2)如图2,过点P作PH⊥AB于H,过点D作DG⊥PH于G,DQ⊥AB于Q,
则四边形DGHQ为矩形,∠GDF=∠EFC=∠DPG=60°
由题意DE=DF=12cm,DP=34cm,
∴PG=17cm,QH=DG=17 cm,QF=6cm,GH=DQ=6cm,
∴PH=PH+GH=17+6≈27.38cm.
故眼睛到水平桌面的距离大约是27.38cm.