题目内容
如图.AB是半圆O的直径,点C是半径OA上的点,过点C作CD⊥AB交半圆O于点D,将△BCD沿BD折叠得到△BED,BE交半圆O于点F,连接DF
(1)求证:DE是半圆O的切线;
(2)连接OD,当OC=AC时,判断四边形ODFB的形状,并证明你的结论.
(1)证明:∵将△BCD沿BD折叠得到△BED,
∴△BCD≌△BED,
∴∠EDB=∠CDB,
∵DC⊥AB,
∴∠DCB=90°,
∴∠DBO+∠CDB=90°,
∵OB=OD,
∴∠DBO=∠BDO,
∴∠BDO+∠EDB=90°,
∴OD⊥DE,
∵OD为半径,
∴DE是半圆O的切线;
(2)四边形ODFB的形状是菱形,
证明:连接AD,OF,
∵AC=OC,OA=OD,
∴DO=2CO,
∵∠DCO=90°,
∴∠DOC=60°,∠CDO=30°,
∵∠ODB=∠OBD,∠DOC=∠OBD+∠ODB,
∴∠DBO=∠ODB=30°,
∵△BCD≌△BED,
∴∠FBD=∠DBO=30°,
∴∠DOF=2∠DBO=60°,
∴∠AOD=∠DOF=∠FOB=60°,
∴DF=BF=AD,
∵AC=CO,DC⊥OA,
∴AD=OD,
∴OD=OB=BF=DF,
∴四边形ODFB是菱形.
分析:(1)根据折叠得出△BCD≌△BED,推出∠EDB=∠CDB,根据∠DCB=90°,求出∠DBO+∠CDB=90°,求出∠DBO=∠BDO,推出∠BDO+∠EDB=90°,根据切线的判定推出即可.
(2)根据直角三角形性质求出∠DOC=60°,求出∠OBD=30°,根据圆周角定理求出∠AOD=∠DOF=∠FOB=60°,推出DF=BF=AD=OD=OB,根据菱形的判定推出即可.
点评:本题考查了切线的判定,折叠的性质,等腰三角形的性质,圆周角定理,直角三角形的性质的应用,主要考查学生综合运用性质进行推理的能力.
∴△BCD≌△BED,
∴∠EDB=∠CDB,
∵DC⊥AB,
∴∠DCB=90°,
∴∠DBO+∠CDB=90°,
∵OB=OD,
∴∠DBO=∠BDO,
∴∠BDO+∠EDB=90°,
∴OD⊥DE,
∵OD为半径,
∴DE是半圆O的切线;
(2)四边形ODFB的形状是菱形,
证明:连接AD,OF,
∵AC=OC,OA=OD,
∴DO=2CO,
∵∠DCO=90°,
∴∠DOC=60°,∠CDO=30°,
∵∠ODB=∠OBD,∠DOC=∠OBD+∠ODB,
∴∠DBO=∠ODB=30°,
∵△BCD≌△BED,
∴∠FBD=∠DBO=30°,
∴∠DOF=2∠DBO=60°,
∴∠AOD=∠DOF=∠FOB=60°,
∴DF=BF=AD,
∵AC=CO,DC⊥OA,
∴AD=OD,
∴OD=OB=BF=DF,
∴四边形ODFB是菱形.
分析:(1)根据折叠得出△BCD≌△BED,推出∠EDB=∠CDB,根据∠DCB=90°,求出∠DBO+∠CDB=90°,求出∠DBO=∠BDO,推出∠BDO+∠EDB=90°,根据切线的判定推出即可.
(2)根据直角三角形性质求出∠DOC=60°,求出∠OBD=30°,根据圆周角定理求出∠AOD=∠DOF=∠FOB=60°,推出DF=BF=AD=OD=OB,根据菱形的判定推出即可.
点评:本题考查了切线的判定,折叠的性质,等腰三角形的性质,圆周角定理,直角三角形的性质的应用,主要考查学生综合运用性质进行推理的能力.
练习册系列答案
相关题目