题目内容
【题目】如图,矩形ABCD中,∠BAD的平分线AE与BC边交于点E,点P是线段AE上一定点(其中PA>PE),过点P作AE的垂线与AD边交于点F(不与D重合).一直角三角形的直角顶点落在P点处,两直角边分别交AB边,AD边于点M,N.
(1)求证:△PAM≌△PFN;
(2)若PA=3,求AM+AN的长.
【答案】(1)证明见解析;(2)3
【解析】
(1)根据题意证明AP=PF,再根据∠MPN=90°,∠APF=90°证明∠MPA=∠FPN即可;
(2)用勾股定理证明AF,再通过全等三角形证明AM=NF即可.
证明:(1)∵四边形ABCD是矩形
∴∠BAD=90°
∵∠BAD的平分线AE与BC边交于点E,
∴∠BAE=∠EAD=45°
∵PF⊥AP
∴∠PAF=∠PFA=45°
∴AP=PF
∵∠MPN=90°,∠APF=90°
∴∠MPN﹣∠APN=∠APF﹣∠APN
∴∠MPA=∠FPN,且AP=PF,∠MAP=∠PFA=45°
∴△PAM≌△PFN(ASA)
(2)∵PA=3
∴PA=PF=3,且∠APF=90°
∴AF==3
∵△PAM≌△PFN;
∴AM=NF
∴AM+AN=AN+NF=AF=3
练习册系列答案
相关题目
【题目】某区举行“庆祝改革开放40周年”征文比赛,已知每篇参赛征文成绩记分,组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表:
征文比赛成绩频数分布表 | ||
分数段 | 频数 | 频率 |
38 | 0.38 | |
0.32 | ||
10 | 0.1 | |
合计 | 1 |
请根据以上信息,解决下列问题:
(1)征文比赛成绩频数分布表中的值是 ;
(2)补全征文比赛成绩频数分布直方图;
(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.