题目内容
【题目】两个相似三角形的面积比为4:9,那么它们对应中线的比为 .
【答案】2:3
【解析】
试题分析:相似三角形的面积之比等于相似比的平方.
【题目】如图,在平面直角坐标系中,已知矩形ABCD的两个顶点B和C在x轴上,OB=OC,AB=2BC=4.若一条抛物线的顶点为A,且过点C,动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动,点P,Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.
(1)求出点A的坐标,并求出抛物线的解析式;
(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积S最大?最大值为多少?
(3)在动点P,Q运动的过程中,是否存在点M,使以C,Q,E,M为顶点的四边形为菱形?若存在,求出此时t的值;若不存在,请说明理由.
【题目】已知:如图, AD=CD=CB=AB=a,DA∥CB,AB⊥CB,∠BAC的平分线交BC于E,作EF⊥AC于F,作FG⊥AB于G.
(1)求AC的长;(2)求证:AB=AG.
【题目】如图1,在直角坐标系中,A(0,1),B(0,3),P是x轴上一动点,在直线y=x上是否存在点Q,使以A、B、P、Q为顶点的四边形为平行四边形?若存在,画出所有满足情况的平行四边形,并求出对应的P、Q的坐标;若不存在,请说明理由.
【题目】如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.
则∠A=∠F,请说明理由.
解:∵∠AGB=∠EHF
∠AGB= (对顶角相等)
∴∠EHF=∠DGF
∴DB∥EC
∴∠ =∠DBA ( 两直线平行,同位角相等)
又∵∠C=∠D
∴∠DBA=∠D
∴DF∥ (内错角相等,两直线平行)
∴∠A=∠F .
【题目】如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )
A. 2∠A=∠1﹣∠2 B. 3∠A=2(∠1﹣∠2)
C. 3∠A=2∠1﹣∠2 D. ∠A=∠1﹣∠2
【题目】如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是( )
A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC
【题目】钓鱼岛是我国渤海海峡上的一颗明珠,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向钓鱼岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往钓鱼岛.下图是渔船及渔政船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)
(1)直接写出渔船离港口的距离s和它离开港口的时间t的函数关系式.]
(2)求渔船和渔政船相遇时,两船与钓鱼岛的距离.
(3)在渔政船驶往钓鱼岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?
【题目】下列计算正确的是( )
A.3x2﹣4x2=﹣1 B.3x+x=3x2
C.4xx=4x2 D.﹣4x6÷2x2=﹣2x3