题目内容
跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲.乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y=ax2+bx+0.9.
(1)求该抛物线的解析式 .
(2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,小华的身高为 ;
(3)如果身高为1.4米的小丽站在OD之间,且离点O的距离为t米, 绳子甩到最高处时超过她的头顶,请结合图像,写出t的取值范围 .
【答案】
(1)抛物线的解析式是y=﹣0.1x2+0.6x+0.9;(2)小华的身高是1.8米;(3)1<t<5.
【解析】
试题分析:(1)已知抛物线解析式,求其中的待定系数,选定抛物线上两点E(1,1.4),B(6,0.9)坐标代入即可;
(2)小华站在OD之间,且离点O的距离为3米,即OF=3,求当x=3时,函数值;
(3)实质上就是求y=1.4时,对应的x的两个值,就是t的取值范围.
试题解析:(1)由题意得点E(1,1.4),B(6,0.9),代入y=ax2+bx+0.9得,
解得,
∴所求的抛物线的解析式是y=﹣0.1x2+0.6x+0.9;
(2)把x=3代入y=﹣0.1x2+0.6x+0.9得
y=﹣0.1×32+0.6×3+0.9=1.8
∴小华的身高是1.8米;
(3)当y=1.4时,﹣0.1x2+0.6x+0.9=1.4,
解得x1=1,x2=5,
∴1<t<5.
考点:二次函数的应用.
练习册系列答案
相关题目