题目内容
【题目】如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD.
(1)求证:四边形ABCD是菱形;
(2)过点C作CE⊥AB交AB的延长线于点E,连接OE,请你先补全图形,再求出当AB=,BD=2时,OE的长.
【答案】(1)见解析;(2)2.
【解析】
(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;
(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.
(1)证明:∵AB∥CD,
∴∠OAB=∠DCA,
∵AC平分∠BAD.
∴∠OAB=∠DAC,
∴∠DCA=∠DAC,
∴CD=AD=AB,
∵AB∥CD,
∴四边形ABCD是平行四边形,
∵AD=AB,
∴四边形ABCD是菱形;
(2)解:补全图形如图所示:
∵四边形ABCD是菱形,
∴OA=OC,BD⊥AC,
∵CE⊥AB,
∴OE=OA=OC,
∵BD=2,
∴OB=BD=1,
在Rt△AOB中,AB=,OB=1,
∴OA==2,
∴OE=OA=2.
练习册系列答案
相关题目