题目内容
边长为1的正方形的顶点在轴的正半轴上,如图将正方形绕顶点顺时针旋转得正方形,使点恰好落在函数的图像上,则的值为 。
过点B向x轴引垂线,连接OB,可得OB的长度,进而得到点B的坐标,代入二次函数解析式即可求解.
解:如图,作BE⊥x轴于点E,连接OB,
∵正方形OABC绕顶点O顺时针旋转75°,
∴∠AOE=75°,
∵∠AOB=45°,
∴∠BOE=30°,
∵OA=1,
∴OB=,
∵∠OCB=90°,
∴BE=OB=,
∴OE=,
∴点B坐标为(,-),
代入y=ax2(a<0)得a=-,
解:如图,作BE⊥x轴于点E,连接OB,
∵正方形OABC绕顶点O顺时针旋转75°,
∴∠AOE=75°,
∵∠AOB=45°,
∴∠BOE=30°,
∵OA=1,
∴OB=,
∵∠OCB=90°,
∴BE=OB=,
∴OE=,
∴点B坐标为(,-),
代入y=ax2(a<0)得a=-,
练习册系列答案
相关题目