题目内容
【题目】山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车1月份销售总额为50000元,2月份销售总额将比1月份减少20%,每辆销售价比1月份降低400元,若这两个月卖出的数量相同。
(1)求2月份A型车每辆售价多少元?
(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,求销售这批车获得的最大利润是多少元?
A、B两种型号车今年的进货和销售价格表:
A型车 | B型车 | |
进货价格(元) | 1100 | 1400 |
销售价格(元) | 2月份的销售价格 | 2000 |
【答案】(1)1600元;(2)34000元
【解析】
(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由卖出的数量相同建立方程求出其解即可;
(2)设今年新进A型车a辆,则B型车(60-a)辆,获利y元,由条件表示出y与a之间的关系式,由a的取值范围就可以求出y的最大值.
(1)解:设2月份A型车每辆售价x元,则1月份售价每辆为(x+400)元,由题意,得: =,解得:x=1600,经检验,x=1600是原方程的根.答:2月份A型车每辆售价1600元
(2)解:设新进A型车a辆,则B型车(60- a)辆,获利y元,由题意得
y=(1600-1100) a+(2000-1400)(60-a),y=-100 a+36000.
∵B型车的进货数量不超过A型车数量的两倍,∴60- a≤2a,∴ a≥20.∵y=-100 a+36000.
∴k=-100<0,∴y随a的增大而减小.∴ a=20时,y最大=34000元.
∴销售这批车获得的最大利润是34000元
【题目】如图,在Rt△ABE中,∠B=90°,以AB为直径的⊙O交AE于点C,CE的垂直平分线FD交BE于D,连接CD.
(1)判断CD与⊙O的位置关系,并证明;
(2)若AC·AE=12,求⊙O的半径.
【题目】某市某中学组织部分学生去某地开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生,现有甲、乙两种大客车,它们的载客量和租金如表所示.
甲种客车 | 乙种客车 | |
载客量/(人/辆) | 30 | 42 |
租金/(元/辆) | 300 | 400 |
学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.
(1)参加此次研学旅行活动的老师和学生各有多少人?
(2)①既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,需租用几辆客车;
②求租车费用的最小值.