题目内容

某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰好在水面中心,安装在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,抛物线的形状如图(1)和(2)所示,建立直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间的关系式是y=-x2+2x+
54
,请回答下列问题.
精英家教网(1)柱子OA的高度为多少米?
(2)喷出的水流距水平面的最大高度是多少?
(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?
分析:在已知抛物线解析式的情况下,利用其性质,求顶点(最大高度),与x轴,y轴的交点,解答题目的问题.
解答:解:(1)当x=0时,y=
5
4

故OA的高度为1.25米;

(2)∵y=-x2+2x+
5
4
=-(x-1)2+2.25,
∴顶点是(1,2.25),
故喷出的水流距水面的最大高度是2.25米;

(3)解方程-x2+2x+
5
4
=0,
得x1=-
1
2
,x2=
5
2

∴B点坐标为(
5
2
,0)

∴OB=
5
2

故不计其他因素,水池的半径至少要2.5米,才能使喷出的水流不至于落在水池外.
点评:本题是抛物线解析式的实际应用,要求掌握抛物线顶点,与x轴交点,y轴交点的实际意义.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网