题目内容

如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.

(1)求直线AC的解析式;

(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);

(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角.

【解析】(1)已知A点的坐标,就可以求出OA的长,根据OA=OC,就可以得到C点的坐标,根据待定系数法就可以求出函数解析式.

(2)点P的位置应分P在AB和BC上,两种情况进行讨论.当P在AB上时,△PMB的底边PB可以用时间t表示出来,高是MH的长,因而面积就可以表示出来

(3)本题可以分:当P点在AB边上运动时,当P点在BC边上运动时,两种情况进行讨论,

 

 

解:(1)……2分

(2)    ……4分

……7分

(3), ……9分

……12分

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网