题目内容
图中是抛物线形拱桥,当水面宽为4米时,拱顶距离水面2米;当水面高度下降1米时,水面宽度为多少米?
建立平面直角坐标系如图:
则抛物线顶点C坐标为(0,2),设抛物线解析式y=ax2+2,将A点坐标(-2,0)代入,可得:0=4a+2,
解得:a=-0.5,
故抛物线解析式为y=-0.5x2+2,
当水面下降1米,通过抛物线在图上的观察可转化为:
当y=-1时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,
将y=-1代入抛物线解析式得出:-1=-0.5x2+2,
解得:x=±
,
所以水面宽度为2
米,
则抛物线顶点C坐标为(0,2),设抛物线解析式y=ax2+2,将A点坐标(-2,0)代入,可得:0=4a+2,
解得:a=-0.5,
故抛物线解析式为y=-0.5x2+2,
当水面下降1米,通过抛物线在图上的观察可转化为:
当y=-1时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,
将y=-1代入抛物线解析式得出:-1=-0.5x2+2,
解得:x=±
6 |
所以水面宽度为2
6 |
练习册系列答案
相关题目