题目内容
【题目】已知关于x的一元二次方程x2-2x+m=0,有两个不相等的实数根.
⑴求实数m的最大整数值;
⑵在⑴的条下,方程的实数根是x1,x2,求代数式x12+x22-x1x2的值.
【答案】⑴m的最大整数值为m=1
(2)x12+x22-x1x2= 5
【解析】试题分析:一元二次方程根的情况与判别式△的关系:(1)△>0方程有两个不相等的实数根;
(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围.
试题解析:⑴由题意,得:△>0,即:>0 解得 m<2,∴m的最大整数值为m="1"
把m=1代入关于x的一元二次方程x2-2x+m=0得x2-2x+1=0,
根据根与系数的关系:x1+x2 =2, x1x2=1,
∴x12+x22-x1x2= (x1+x2)2-3x1x2=(2)2-3×1=5
练习册系列答案
相关题目