题目内容
如图,抛物线y=ax2+bx+c经过点A(0,4)、B(2,4),它的最高点纵坐标为,点P是第一象限抛物线上一点且PA=PO,过点P的直线分别交射线AB、x正半轴于C、D.设AC=m,OD=n.(1)求此抛物线的解析式;
(2)求点P的坐标及n关于m的函数关系式;
(3)连接OC交AP于点E,如果以A、C、E为顶点的三角形与△ODP相似,求m的值.
【答案】分析:(1)已知抛物线的顶点纵坐标以及对称轴,根据待定系数法即可求得二次函数的解析式;
(2)首先求得A点的坐标,P的纵坐标是A的纵坐标的一半,即可求得P的纵坐标,代入二次函数解析式即可求得P的坐标;
(3)分△ACE∽△ODP和△ACE∽△OPD,两种情况,根据相似三角形的对应边的比相等,即可求得m的值.
解答:解:(1)设函数解析式为,
解出,
∴;
(2)求出点P的坐标为(3,2),
由梯形中位线定理得,AC+OD=3×2=6,m+n=6,
∴n=6-m(0≤m≤6);
(3)方法一:①当△ACE∽△ODP时(如图1),∠ACO=∠ODP,
∵AB∥x轴,∴∠ACO=∠COD
∴∠COD=∠ODP,OC=CD,又CF⊥OD,∴AC=OF=OD,
∴m=(6-m)解得:m=2
②当△ACE∽△OPD时(如图2),∠ACO=∠OPD,∵∠ACO=∠COD
∴∠COD=∠OPD,可得△OPD∽△COD,可得OD2=DP•DC,
即OD2=CD2=(6-m)2=()2,解得:m=
方法二:得出AE=
1当△ACE∽△ODP时,可求出m=2
②当△ACE∽△OPD时,可求出m=.
点评:本题考查了二次函数解析式的确定、相似三角形的性质等知识点.(3)题中,要根据相似三角形对应边和对应角的不同分类讨论,不要漏解.
(2)首先求得A点的坐标,P的纵坐标是A的纵坐标的一半,即可求得P的纵坐标,代入二次函数解析式即可求得P的坐标;
(3)分△ACE∽△ODP和△ACE∽△OPD,两种情况,根据相似三角形的对应边的比相等,即可求得m的值.
解答:解:(1)设函数解析式为,
解出,
∴;
(2)求出点P的坐标为(3,2),
由梯形中位线定理得,AC+OD=3×2=6,m+n=6,
∴n=6-m(0≤m≤6);
(3)方法一:①当△ACE∽△ODP时(如图1),∠ACO=∠ODP,
∵AB∥x轴,∴∠ACO=∠COD
∴∠COD=∠ODP,OC=CD,又CF⊥OD,∴AC=OF=OD,
∴m=(6-m)解得:m=2
②当△ACE∽△OPD时(如图2),∠ACO=∠OPD,∵∠ACO=∠COD
∴∠COD=∠OPD,可得△OPD∽△COD,可得OD2=DP•DC,
即OD2=CD2=(6-m)2=()2,解得:m=
方法二:得出AE=
1当△ACE∽△ODP时,可求出m=2
②当△ACE∽△OPD时,可求出m=.
点评:本题考查了二次函数解析式的确定、相似三角形的性质等知识点.(3)题中,要根据相似三角形对应边和对应角的不同分类讨论,不要漏解.
练习册系列答案
相关题目